• Title/Summary/Keyword: EMG measuring clothing

Search Result 4, Processing Time 0.017 seconds

Development and Evaluation of Wearable Smart Clothing for Combined EMG Devices (웨어러블 근전도 디바이스 결합형 스마트의류 개발 및 성능평가)

  • Sojung Lee;Hyelim Kim;Wonyoung Jeong
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.210-220
    • /
    • 2023
  • Recently, smart wearable products, including electromyography (EMG) measurement devices and clothing, have been developed to monitor users' exercise levels, muscle activation, and muscle balance more effectively during fitness activities. However, technical and socioeconomic barriers, such as flexibility and durability, still pose challenges in terms of comfort, ease of wear, and wearability of smart clothing, which includes devices and circuits. To address these issues, this study developed a wearable EMG device integrated with clothing to collect valid EMG signals from desired muscles while maintaining comfort, functionality, and ease of wear. After deriving a combined structure that could stably position the wearable device within the clothing, a prototype was manufactured and evaluated for fit, compression, comfort, and exercise comfort test by ten participants (height = 176.2 cm, weight = 76.4 kg, chest circumference = 101.2 cm). The study found that the prototype had smaller circumferences around the chest, waist, and abdomen compared to commercial products, resulting in lower ratings for wearing comfort and ease of wear. However, the prototype received high ratings for fitting, pressure, and the exercise comfort test. Valid signals were obtained when the EMG device was combined to the prototype for the rectus femoris muscle, indicating stable positioning of the device during exercise.

Effect of Different Types of Firefighter Station Uniforms on Wearer Mobility using Range of Motion and Electromyography Evidence

  • Son, Su-Young
    • Fashion & Textile Research Journal
    • /
    • v.21 no.2
    • /
    • pp.209-219
    • /
    • 2019
  • This study analyzed and compared wearer mobility for different types of clothing that also included the potential to develop firefighter station uniforms using range of motion (ROM) and electromyography (EMG). This study focused on a comparison of wearer mobility affected by different materials and shapes of the station uniforms worn under firefighter turnout gear. Japanese standard uniform (UNI), stretch-wear (ST), and compression-wear (CP) were used as station uniforms for the experiment. This study analyzed wearer movements and quantified ROM and EMG. In addition, the subjective evaluation of wearer mobility and comfort were assessed for comparisons. Nine healthy male students participated in the experiment. Wearer mobility was analyzed using ROM and EMG data obtained by measuring five motions; in addition, subjective evaluations were also obtained. As compared with the standard station uniform, ROM increased 6.8 % and 7.2 % due to stretch-wear and compression-wear. The benefits of wearing stretch material or compression material to improve muscle performance (such as reduced percent of maximum voluntary contraction) were not proven. Differences between materials and designs influenced subjective wearer comfort. In particular, the wearing of compression materials was shown best in terms of wearer comfort that may also allow greater wearer mobility.

Evaluation of Muscle Load and Fatigue According to the Shape of Severe Dementia Patients' Clothing (중증 치매환자복 형태에 따른 근육 부하 및 피로도 평가)

  • Kwang Ae Park;Chung Eun Yang;Hayoung Jung
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.185-198
    • /
    • 2023
  • The purpose of this study is to obtain information necessary for the development of patient clothes that can reduce physical fatigue of caregivers by quantitatively measuring the muscle load and fatigue. The patient clothes used in this study can be broken down into three types: A type (back center zipper open suit), B type (top-to bottom separated patient clothes), and C type (front zipper open suit). The EMG measurement sites are as follows: hand muscle (brachioradialis), upper arm (biceps, triceps), shoulder (anterior deltoid, medial deltoid, posterior deltoid, upper trapezius), and waist (erector spinae); additionally, the EMG signals were measured. Through this experiment, muscle load, muscle energy consumption, and muscle fatigue generation tendency were analyzed. The results of the study revealed that the C type patient clothes required the most strength in the muscles of the shoulders, upper arms, hands, and back when being put on and taken off compared to other patient clothes. The A type clothes required a relatively large force in opening the zipper. In terms of muscle energy consumption, B type generally called for more strength when it came to the zip-up and putarmsup motions. With regard to the cover the body and put legs/hips up motions, C type used the highest amount of muscle energy, whereas A type used relatively little energy. In terms of the occurrence of muscle fatigue during the putting on and taking off of the patient's clothing, there was a difference in the area and degree of muscle fatigue in the A, B, and C types, and there was also a tendency for muscle fatigue to occur when performing repetitive movements.

Development of compression garment of soft type for orthotherapy on low back pain and the improvement of asymmetric EMG (요통방지를 위한 소프트형 의복 개발과 요부 근전도의 좌우 비대칭성 개선)

  • Kim, Soyoung;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.23 no.4
    • /
    • pp.665-680
    • /
    • 2014
  • The purpose of this study was to develop the construction process of orthopedic compression garments (OCG) for balancing of the left and right lumbar muscle power and strength to prevent low back pain. One male subject having low back pain was involved for investigating of the lumbar muscle power. EMG (Telemyo DTS2, Noraxon, U.S.A) was measured with/ without 3 types of waist assistant belt around the waist area of the subject. Based on the electromyogram value of left and right body, OCG were constructed as follows. Firstly, stretchable t-shirts type with supportive waist belt was selected for the convenience of wearing and laundering the OCG. The design lines of the front and back waist parts were created depending on the anatomy of the torso. Secondly, 3D pattern was developed using 3D Clo, RapidForm XOR, 2C-AN, and Yuka CAD program to increase the fit of the OCG. Finally, stretchable power-net was layered as linings in two ways, a single lining and double layered linings, and evaluated measuring lumbar muscle EMG by five subjects with low back pain. As the results, they were effective to balance the left and right lumbar muscle power and strength. Also the OCG with the double layered power-net lining was superior to the one layered lining in terms of fit and comfort.