• Title/Summary/Keyword: EMG Algorithm

Search Result 100, Processing Time 0.03 seconds

The Hybrid LVQ Learning Algorithm for EMG Pattern Recognition (근전도 패턴인식을 위한 혼합형 LVQ 학습 알고리즘)

  • Lee Yong-gu;Choi Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.113-121
    • /
    • 2005
  • In this paper, we design the hybrid learning algorithm of LVQ which is to perform EMG pattern recognition. The proposed hybrid LVQ learning algorithm is the modified Counter Propagation Networks(C.p Net. ) which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVa. The weights of the proposed C.p. Net. which is between input layer and subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVd algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights which is between subclass layer and class layer of C.p. Net. is learned to classify the classified subclass. which is enclosed a class . To classify the pattern vectors of EMG. the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Low Frequency Characteristics Analysis of EMG Signal on the Probability Density Function of the IPI (IPI의 확률밀도함수에 의한 근신호의 저주파 특성 해석)

  • 류재춘;조원경;박종국;김성환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.335-342
    • /
    • 1988
  • In this paper, we proposed a new algorithm for EMG low frequency analysis. Through the power spectrum analysis of Gaussian's, Gamma's and Erlang's PDF(probability density function) based on the proposed algorithm, the proper PDF of IPI (inter pulse interval) representing the firing rate of muscle was suggested. In order to verify the proposed algorithm EMG signals of masseter and biceps muscle were detected by surface electrode and its power spectrum analysis was performed. The experimental results are compared with the computer simulaiton. As a result, the masseter muscle's IPI was fitted by Gamma PDF, having a 10Hz fundamental frequency including n(1+\ulcornerfp high harmnic frequency on 10% MVC(maximum voluntary contaraction). And the biceps muscle's IPI was fitted by Gaussian PDF, also it have a 14Hz fundamental frequency.

  • PDF

A Design of Real Time Measurement System for EMG Silent Period Under Window Base (윈도우 환경하에서 근전도의 실시간 Silent Period 측정 시스템 설계)

  • 강병길;김태훈;이영석;김덕영;김세동;김성환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.611-617
    • /
    • 2003
  • A mechanical or electrical stimulation to the mandibular symphysis during a maximal voluntary clenching of the teeth always produces a jaw jerk followed by a silent period (transient stops) in the masseteric EMG (electromyogram). Generally, a mechanical stimulation is followed by a single silent period, and an electrical stimulation is followed by multiple silent periods. In this paper, we propose a new algorithm for determining the duration of the masseter silent period. The decision approach in essentially based upon a segmentation algorithm consisted of variance filter, median filter and gaussian filter. The new adaptive digital notch filter using R-CLMS(reverse constrained least mean-squared) algorithm is proposed for the elimination of powerline(60Hz) noise. At the same time, we design a real time measurement system for the EMG silent period under Window base.

Design of Adaptive Filter for Muscle Response Suppression and FPGA Implementation (근 반응제거를 위한 적응필터 설계와 FPGA 구현)

  • 염호준;박영철;윤형로
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.708-716
    • /
    • 2003
  • The surface EMG signal detected from voluntarily activated muscles can be used as a control signal for functional electrical stimulation. To use the voluntary EMG signal, it is necessary to eliminate the muscle response evoked by the electrical stimulation and enable to process the algorithm in real time. In this paper, we propose the Gram-Schmidt(GS) algorithm and implement it in FPGA(field programmable gate array). GS algorithm is efficient to eliminate periodic signals like muscle response, and is more stable and suitable to FPGA implementations than the conventional least-square approach, due to the systolic array structure.

Joint Torque Estimation of Elbow joint using Neural Network Back Propagation Theory (역전파 신경망 이론을 이용한 팔꿈치 관절의 관절토크 추정에 관한 연구)

  • Jang, Hye-Youn;Kim, Wan-Soo;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.670-677
    • /
    • 2011
  • This study is to estimate the joint torques without torque sensor using the EMG (Electromyogram) signal of agonist/antagonist muscle with Neural Network Back Propagation Algorithm during the elbow motion. Command Signal can be guessed by EMG signal. But it cannot calculate the joint torque. There are many kinds of field utilizing Back Propagation Learning Method. It is generally used as a virtual sensor estimated physical information in the system functioning through the sensor. In this study applied the algorithm to obtain the virtual senor values estimated joint torque. During various elbow movement (Biceps isometric contraction, Biceps/Triceps Concentric Contraction (isotonic), Biceps/Triceps Concentric Contraction/Eccentric Contraction (isokinetic)), exact joint torque was measured by KINCOM equipment. It is input to the (BP)algorithm with EMG signal simultaneously and have trained in a variety of situations. As a result, Only using the EMG sensor, this study distinguished a variety of elbow motion and verified a virtual torque value which is approximately(about 90%) the same as joint torque measured by KINCOM equipment.

The Implementation of the Intelligent Exoskeleton Robot Arm Using ElectroMiogram(EMG) vital Signal (근전도 생체 신호를 이용한 지능형 외골격 로봇팔의 구현)

  • Jeon, Bu-Il;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.533-539
    • /
    • 2012
  • The purpose of this study is to estimate a validity of control signal through a design of Exoskeleton Robot Arm's capable of intelligent recognition as a human arm's motion by using realtime processed data of generated EMG signals. By an intelligent algorithm, the EMG output value of human biceps and triceps muscles contraction can be recognized and used for the control over exoskeleton arm corresponding to human's recognition and judgement. The EMG sensing data of muscles contraction and relaxation are used as the input signal from human's body to operate the Exoskeleton Robot Arm thus copying human arm motion. An intelligent control of Exoskeleton Robot Arm is to design the analog control circuit which processes the input data, and then to manufacture an integrated control board. And then abstracted signal is passed by DSP signal processing, Fuzzy logic algorithm is designed for a accurate prediction of weight or load through the intelligent algorithm, and design an Exoskeleton Robot Arm to express a human's intention.

A Gaussian Mixture Model Based Pattern Classification Algorithm of Forearm Electromyogram (Gaussian Mixture Model 기반 전완 근전도 패턴 분류 알고리즘)

  • Song, Y.R.;Kim, S.J.;Jeong, E.C.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 2011
  • In this paper, we propose the gaussian mixture model based pattern classification algorithm of forearm electromyogram. We define the motion of 1-degree of freedom as holding and unfolding hand considering a daily life for patient with prosthetic hand. For the extraction of precise features from the EMG signals, we use the difference absolute mean value(DAMV) and the mean absolute value(MAV) to consider amplitude characteristic of EMG signals. We also propose the D_DAMV and D_MAV in order to classify the amplitude characteristic of EMG signals more precisely. In this paper, we implemented a test targeting four adult male and identified the accuracy of EMG pattern classification of two motions which are holding and unfolding hand.

A Study on the Measurement of Back Muscle Fatigue During Dynamic Contraction Using Multiple Parameters (다중 파라메터를 이용한 동적 수축시 허리 근육 피로 측정에 관한 연구)

  • Yoon, Jung-Gun;Jung, Chul-Ki;Yeo, Song-Phil;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.344-351
    • /
    • 2006
  • The fatigue of back muscle in the repetitive lifting motion was studied using multiple parameters(FFT_MDF, RMS, 2C, NT) in this study. Recent developments in the time-frequency analysis procedures to compute the IMDF(instantaneous median frequency) were utilized to overcome the nonstationarity of EMG signal using Cohen-Posch distribution. But the above method has a lot of computation time because of its complexity. So, in this study, FFT_MDF(median frequency estimation based on FFT) algorithm was used for median frequency estimation of back muscle EMG signal during muscle work in uniform velocity portion of lumbar movement. The analysis period of EMG signal was determined by using the run test and lumbar movement angle in dynamic task, such as lifting. Results showed that FFT_MDF algorithm is well suited for the estimation of back muscle fatigue from the view point of computation time. The negative slope of a regression line fitted to the median frequency values of back muscle EMG signal was taken as an indication of muscle fatigue. The slope of muscle fatigueness with FFT_MDF method shows the similarity of 77.8% comparing with CP_MDF(median frequency estimation based on Cohen Posch distribution) method.

Pattern Recognition of EMG Signal using Artificial Neural Network (신경회로망을 이용한 근전도 신호의 특성분석 및 패턴 분류)

  • Yi, Seok-Joo;Lee, Sung-Hwan;Cho, Young-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.769-771
    • /
    • 2000
  • In this paper, pattern recognition scheme for EMG signal using artificial neural network is proposed. For manipulating ability, the movements of human arm are classified into several categories EMG signals of appropriate muscles are collected during arm movement. Patterns of EMG signals of each movement are recognized as follows: 1) The features of each EMG signal are extracted. 2) With these features, the neural network is trained by using feedforward error back-propagation (FFEBP) algorithm. The results show that the arm movements can be classified with EMG signals at high accuracy.

  • PDF

Development of a Real-Time Algorithm for Isometric Pinch Force Prediction from Electromyogram (EMG) (근전도 기반의 실시간 등척성 손가락 힘 예측 알고리즘 개발)

  • Choi, Chang-Mok;Kwon, Sun-Cheol;Park, Won-Il;Shin, Mi-Hye;Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1588-1593
    • /
    • 2008
  • This paper describes a real-time isometric pinch force prediction algorithm from surface electromyogram (sEMG) using multilayer perceptron (MLP) for human robot interactive applications. The activities of seven muscles which are observable from surface electrodes and also related to the movements of the thumb and index finger joints were recorded during pinch force experiments. For the successful implementation of the real-time prediction algorithm, an off-line analysis was performed using the recorded activities. Four muscles were selected for the force prediction by using the Fisher linear discriminant analysis among seven muscles, and the four muscle activities provided effective information for mapping sEMG to the pinch force. The MLP structure was designed to make training efficient and to avoid both under- and over-fitting problems. The pinch force prediction algorithm was tested on five volunteers and the results were evaluated using two criteria: normalized root mean squared error (NRMSE) and correlation (CORR). The training time for the subjects was only 2 min 29 sec, but the prediction results were successful with NRMSE = 0.112 ${\pm}$ 0.082 and CORR = 0.932 ${\pm}$ 0.058. These results imply that the proposed algorithm is useful to measure the produced pinch force without force sensors in real-time. The possible applications include controlling bionic finger robot systems to overcome finger paralysis or amputation.

  • PDF