• Title/Summary/Keyword: EMG 분석

Search Result 332, Processing Time 0.024 seconds

Bite Force, Occlusal Contact Area and Occlusal Pressure of Patients with Temporomandibular Joint Internal Derangement (측두하악관절 내장증 환자의 교합력, 교합 접촉 면적 및 교합압)

  • Kim, Ki-Seo;Choi, Jong-Hoon;Kim, Seong-Taek;Kim, Chong-Youl;Ahn, Hyung-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.265-274
    • /
    • 2006
  • Temporomandibular joint (TMJ) internal derangement, especially disc displacement with reduction (DDwR) is the most common TMJ arthropathy and has been thought to do some effects on masticatory performance. Measuring of maximal bite force has been widely used as objective and quantitative method of evaluating masticatory performance, but previous studies showed various results due to various characteristics of subjects and different measuring devices and techniques. In a few studies about the correlation of bite force and temporomandibular disorders (TMD), some authors reported that bite force and masticatory performance would be reduced in patients with TMD because of pain. But the correlation of changes in structure of articular disc and masticatory performance has not been well investigated yet. In this study, to investigate the influences of non-painful disc change on the masticatory performance, we measured the value of maximal bite force, occlusal contact area and occlusal pressure of 39 patients with non-painful DDwR of the TMJ using pressure sensitive film, and compared it with that of 59 controls. The results are summarized as follows: 1. The maximal bite force (P<0.01) and the occlusal contact area (P < 0.05) of the DDwR patients were greater than the controls. 2. There was no significant difference in occlusal pressure between the DDwR patients and the controls (P > 0.05). 3. The maximal bite force of the male group was greater than that of the female group (P < 0.05). However, the occlusal contact area and the occlusal pressure between the male and the female group didn't show significant difference (P > 0.05). From the results above, we can suggest that DDwR could be a factor of changing bite force, but more controlled, large scaled and EMG related further study is needed.

Studies on the Functional Interrelation between the Vestibular Canals and the Extraocular Muscles (미로반규관(迷路半規管)과 외안근(外眼筋)의 기능적(機能的) 관계(關係)에 관(關)한 연구(硏究))

  • Kim, Jeh-Hyub
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.1-17
    • /
    • 1974
  • This experiment was designed to explore the specific functional interrelations between the vestibular semicircular canals and the extraocular muscles which may disclose the neural organization, connecting the vestibular canals and each ocular motor nuclei in the brain system, for vestibuloocular reflex mechanism. In urethane anesthetized rabbits, a fine wire insulated except the cut cross section of its tip was inserted into the canals closely to the ampullary receptor organs through the minute holes provided on the osseous canal wall for monopolar stimulation of each canal nerve. All extraocular muscles of both eyes were ligated and cut at their insertio, and the isometric tension and EMG responses of the extraocular muscles to the vestibular canal nerve stimulation were recorded by means of a physiographic recorder. Upon stimulation of the semicircular canal nerve, direction if the eye movement was also observed. The experimental results were as follows. 1) Single canal nerve stimulation with high frequency square waves (240 cps, 0. 1 msec) caused excitation of three extraocular muscles and inhibition of remaining three muscles in the bilateral eyes; stimulation of any canal nerve of a unilateral labyrinth caused excitation (contraction) of the superior rectus, superior oblique and medial rectus muscles and inhibition (relaxation) of the inferior rectus, inferior oblique and lateral rectos muscles in the ipsilateral eye, and it caused the opposite events in the contralateral eye. 2) By the overlapped stimulation of triple canal nerves of a unilateral labyrinth, unidirectional (excitatory or inhibitory) summation of the individual canal effects on a given extraocular muscles was demonstrated, and this indicates that three different canals of a unilateral vestibular system exert similar effect on a given extraocular muscles. 3) Based on the above experimental evidences, a simple rule by which one can define the vestibular excitatory and inhibitory input sources to all the extraocular muscles is proposed; the superior rectus, superior oblique and medial rectus muscles receive excitatory impulses from the ipsilateral vestibular canals, and the inferior rectus, inferior oblique and lateral rectus muscles from the contralateral canals; the opposite relationship applies for vestibular inhibitory impulses to the extraocular muscles. 4) According to the specific direction of the eye movements induced by the individual canal nerve stimulation, an extraocutar muscle exerting major role (a muscle of primary contraction) and two muscles of synergistic contraction could be differentiated in both eyes. 5) When these experimental results were compared to the well known observations of Cohen et al. (1964) made in the cats, extraocular muscles of primary contraction were the same but those of synergistic contraction were partially different. Moreover, the oblique muscle responses to each canal nerve excitation appeared to be all identical. However, the responnes of horizontal (medial and lateral) and vertical (superior and inferior) rectus muscles showed considerable differences. By critical analysis of these data, the author was able to locate theoretical contradictions in the observations of Cohen et al. but not in the author's results. 6) An attempt was also made to compare the functional observation of this experiment to the morphological findings of Carpenter and his associates obtained by degeneration experiments in the monkeys, and it was able to find some significant coincidence between there two works of different approach. In summary, the author has demonstrated that the well known observations of Cohen et al. on the vestibulo-ocular interrelation contain important experimental errors which can he proved by theoretical evaluation and substantiated by a series of experiments. Based on such experimental evidences, a new rule is proposed to define the interrelation between the vestibular canals and the extraocular muscles.

  • PDF