• Title/Summary/Keyword: EMG (Electromyographic)

Search Result 221, Processing Time 0.021 seconds

A SEMG analysis of knee joint angle during close kinetic chain exercise and open kinetic chain exercises in quadriceps muscle (단일관절운동과 복합관절운동 시 슬관절 각도에 따른 대퇴사두근의 표면 근전도 비교 분석)

  • Han Sang-Wan
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.3
    • /
    • pp.192-204
    • /
    • 2004
  • The surface electromyographic(sEMG) analyses were knee joint angle during open kinetic chain exercise (OKC) and close kinetic chain exercise (CKC) in vastus medialis (VM), vastus lateralis (VL), and rectus femoralis (RF). Ten subjects with normal , aged 20 to 30(X=27.4, SD=3.23), were randomized Statistical techniques for data analysis were applied paired t-test. The 0.05 level of significane was used as the critical level for rejection of the null hypotheses for the study. And the results were: 1) Both OKC and CKC improved the strength of quadriceps muscle as the knee joint flexion was increased. 2) In OKC, the strength of VM was improved the most at the 30 degree angle. 3) In CKC, the strength of VM was improved the most at the 30 degree angle. 4) The VM/VL ratio was the largest at the 10 and 20 degree angles in OKC and CKC. 5) The VM/VL ratio at 10, 20, and 30 degree angles was significantly different between OKC and CKC (P < 0.05). Base on the results, the OKCE is recommended for the knee joint patients, especially for the patellofemoral pain syndrome patients, during the early phase of rehabilitation. In order to improve strength of the quadriceps, muscle strength training at 30 degree angle is recommended. In order to improve VM/VL ratio, 10 and 20 degree angles are recommended during OKCE and CKCE, respectively. Future researches are warranted comparing electromyographic analysis between OKCE and CKCE in the quadriceps at a certain work lead, and muscle strength performance in the quadriceps at different positions of foot.

  • PDF

Electromyographic Activity of the Biceps Brachii Muscle in Shoulders With Anterior Instability (전방 불안정성 견관절에서 이두박근의 근전도 활동성)

  • Kim Seung-Ho;Ha Kwon-Ick;Kim Hyeon-Sook;Kim Seon-Woo;Park Jong Hyuk;Kim Young-Min
    • Clinics in Shoulder and Elbow
    • /
    • v.3 no.2
    • /
    • pp.87-94
    • /
    • 2000
  • Purpose : The purpose of this study was to evaluate the activity of the biceps brachii muscle in the vulnerable abduction and external rotation position of the shoulder in patients with anterior instability. Materials and Methods: This experimental study include a prospective analysis of the electromyographic(EMG) data on a group of patients with traumatic unilateral anterior instability of the shoulder. The EMG data of unstable shoulders was compared with those of opposite shoulders as control. The optimal sample size for the case-control study was calculated using an nQuery Advisor program(nQuery Adviser 3.0, Statisticl solutions Ltd., Ireland). The EMG analyses were conducted in 76 shoulders in 38 patients who had a traumatic anterior instability in one shoulder. The EMG records were obtained at different position of shoulder, which included 0° , 45° , 90° and 120° of shoulder abduction. In each angle of shoulder abduction, the arms were placed in an external rotation as tolerated by the anterior apprehension. The paired-sample T test was used to compare the difference of the root mean square(RMS) voltages between the stable and unstable shoulders in each degree of arm position. Results : The RMS voltage of the biceps muscle was significantly greater in the unstable shoulder than opposite stable shoulder in all position of the arm(p<0.001). The RMS voltage of the biceps was maximal at 90° and 120° of external rotation in the unstable shoulder(p<0.05). The RMS voltage of the supraspinatus muscle revealed no differences in any of the test conditions(p=0.904, 0.506, 0.119 and 0.781 in 0° , 45° , 90° and 120° , respectively) Conclusion: In the vulnerable abduction and external rotation position, the biceps muscle plays an active compensatory role in the unstable shoulder while not in the stable shoulder.

  • PDF

Muscle Activity of Low Back Muscles During Isometric Back Extension Exercises (등척성 신전운동 시 요부근의 근 활성도)

  • Yu, Won-Gyu;Jung, Young-Jong;Lee, Jae-Ho;Kim, Chang-In
    • Physical Therapy Korea
    • /
    • v.8 no.1
    • /
    • pp.76-88
    • /
    • 2001
  • Back extension exercises have been used for rehabilitation of the injured low back, prevention of injury, and fitness training programs. However, excessive loading on low back can exacerbate existing structural weakness. The purpose of this study was to compare muscle activity of low back muscles during back extension exercises. Twenty healthy male subject s were evaluated. Electromyographic (EMG) activities of low back muscles at L1 and L5 level were recorded during seven different back extension exercises and two reference tasks by surface EMG and saved for data analysis. Reference tasks of lifting 20% and 40% of their body weight were included for comparison. The result were as follows: 1) Single-arm extension and single-leg extension exercises on quadruped position appeared to constitute a low-risk exercise for initial extensor strengthening. 2) When arm extension was combined with contralateral leg extension on quadruped position, EMG activities of low back muscles were increased. 3) EMG activity of low back muscles was highest during the trunk extension exercises on prone position. 4) EMG activities of low back muscles during arm and leg extension exercises on quadruped position were less than those of reference task of lifting 40% of their body weight. These result s have important implications for progressive back extensor muscle strengthening exercises in patients with back pain.

  • PDF

Activation of Knee Muscles on Various Decline Boards and Postures During Single Leg Decline Squat Exercise (내림 경사대에서 한 다리 스쿼트 운동 시 경사면과 자세변화에 따른 무릎주변근의 근활성도)

  • Yoo, Won-Gyu;Yi, Chung-Hwi;Kwon, Oh-Yun;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.12 no.3
    • /
    • pp.22-30
    • /
    • 2005
  • This study was designed to identify the effect of various decline boards and postures of lower extremities on surface electromyographic (EMG) activity of knee muscles during isometric single-leg decline squat exercises. The subjects were twenty young male adults who had not experienced any knee injury and their Q-angles were within a normal range. They were asked to perform single-leg decline squat exercises in five various conditions. The EMG activities of the gluteus maximus (GM), vastus lateralis (VL), vastus medialis (VMO), tibialis anterior (TA), and gastrocnemius (GCM) muscles were recorded in five various single-leg decline squat exercises by surface electrodes and normalized by maximal voluntary isometric contraction (MVIC) values. The normalized EMG activity levels were compared using one-way ANOVA with repeated measures. The results of this study were as follows: 1) Exercises 2 and 4 produced significantly greater EMG activity of VMO than did exercise 1 ($p_{adj}$<.05/10), 2) The VMO/VL ratio of EMG activity of exercise 4 was the highest, producing a significantly greater ratio than exercise 1 ($p_{adj}$<.05/10). These results show that single-leg lateral oblique decline squat exercise is the best exercise for selective strengthening of VMO, and the posture of the contralateral leg does also affect strengthening of VMO, but we'll need to research patellofemoral joint compression for clinical application of single-leg lateral oblique decline squat exercises.

  • PDF

Effect of Medial Wedge on Muscle Activity of Lower Limb in Healthy Adults During One Leg Standing (한 다리 서기 시 내측 쐐기(wedge)의 적용이 하지 근활성도에 미치는 영향)

  • Hong, Ji-A;Kim, Min-Hee;Jung, Doh-Heon;Lim, One-Bin;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2011
  • Foot posture is important in the development of the musculoskeletal structure in the lower limbs because it can change the mechanical alignment. Although foot orthotics are widely used for the correction of malalignments in the lower extremities, the biomechanical effects of wedges have not yet been cleared. The aim of this study was to investigate whether medial wedges affect the electromyographic (EMG) activity of the knee and hip joints in healthy adults that are performing one leg standing. Seventeen healthy volunteers performed the one leg standing under two foot conditions: A level surface, and a $15^{\circ}$ medial wedge. The subjects' EMG data for the gluteus maximus (Gmax), gluteus medius (Gmed), tensor fasciae latae (TFL), biceps femoris (BF), vastus lateralis (VL), and vastus medialis oblique (VMO) were recorded, along with the surface EMG, and all were analyzed. The EMG activity of the Gmed and TFL had significantly decreased under the medial wedge condition during one leg standing. Further study is needed in order to investigate whether medial wedges influence the EMG activity and kinematic data of the knee and hip joints as well as the ankle joints in adults with flexible flatfoot, while they are performing one leg standing.

The Effects of the Position of Ipsilateral Neck Rotation on the Inhibition of the Upper Trapezius Muscle During Lower Trapezius Exercises

  • Park, Se-in;Chae, Ji-yeong;Kim, Hyeong-hwi;Cho, Yu-geoung;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • Background: The unilateral prone arm lift (UPAL) is commonly used to exercise the lower trapezius muscle. However, overactivation of the upper trapezius can induce pain during UPAL exercises in subjects with upper trapezius tenderness. Objects: The purpose of this study was to investigate the effects of position of ipsilateral neck rotation (INR) on the inhibition of upper trapezius muscle activity and the facilitation of the lower trapezius muscle when performing UPAL exercises. Methods: In total, 19 subjects with upper trapezius tenderness were recruited for the study. Electromyographic (EMG) activity was measured in the upper, middle, and lower trapezius muscles during UPAL with and without INR position. Wilcoxon signed-rank test was used to compare EMG activity in the trapezius muscles and the muscle ratios. Results: EMG activity in the upper trapezius muscles was decreased significantly in the INR condition compared to without the position with INR during UPAL exercises (p<.05). EMG activity in the middle and lower trapezius was not significantly different between the with and without INR conditions (p>.05). However, the ratio of lower to upper trapezius activation showed a significant increase in the INR condition compared to the without INR condition (p<.05), indicating greater lower trapezius activation relative to the upper trapezius in the INR position than in the without INR position. Conclusions: The EMG results obtained in this study suggest that the position with INR reduced overactivation in the upper trapezius and improved muscle imbalance during lower trapezius exercises in individuals with upper trapezius tenderness.

Effect of Visual and Palpation Feedback on Muscle Activity of Gluteus Maximus and Motion of Pelvic Rotation during Clam Exercise (크램 운동 시 시각-촉진 되먹임이 큰볼기근 활성도와 골반 회전에 미치는 영향)

  • Koh, Eun-Kyung;Jung, Do-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.337-342
    • /
    • 2013
  • Purpose: This study was conducted in order to determine the effect of visual and tactile feedback on muscle activity of the gluteus maximus (Gmax) and abdominal muscles and the motion of pelvic rotation during performance of clam exercise (CE). Methods: Thirteen subjects without low back pain were recruited for this study. Each subject was instructed to perform the CE without and with feedback. The subjects were instructed to keep pelvic from rotating backwards by palpating the ASIS and monitoring the pelvic movement by themselves during performance of CE with feedback. The electromyographic (EMG) activities of Gmax and abdominal muscles were collected using surface EMG. Angles of pelvic rotation were measured using a 3-dimensional motion-analysis system. Paired t-tests were used for comparison of EMG activities in each muscle and the angle of pelvic rotation. Results: The EMG activities of all abdominal muscles were not significant between CM without and CM with feedback (p>0.05). The EMG activity of Gmax was significantly greater in CM with feedback compared with CM without feedback (without vs. with feedback; 14.2% vs. 20.7%MVIC) (p<0.05). The angle of pelvic rotation was significantly less in CM with feedback compared with CM without feedback (without vs. with feedback; $15.3^{\circ}$ vs. $10.8^{\circ}$ ) (p<0.05). Conclusion: Therefore, these findings suggest that CM with the visual and tactile feedback is effective in activation of the Gmax and correcting of the uncontrolled lumbopelvic rotation during CE.

Effect of Ribcage Stabilization Using a Belt on EMG Activity of the Abdominal Muscles During Double Leg Lowering in the Supine Position (벨트를 이용한 가슴우리 고정이 누운자세에서 다리내리기 동안 복부 근육들의 근활성도에 미치는 영향)

  • Weon, Jonghyuck
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.2
    • /
    • pp.25-32
    • /
    • 2017
  • Purpose : The purpose of this study was to determine the effect of ribcage stabilization using a belt in the supine position during double leg lowering (DLL) by investigating the electromyographic (EMG) activities of the abdominal muscles. Methods : Twenty-two subjects with lumbar extension syndrome were recruited. EMG activity was recorded from rectus abdominalis (RA) and internal oblique abdominalis (IO), external oblique abdominalis (EO) muscles while subjects performed three double leg lowering exercises: double leg lowering (DLL), double leg lowering with abdominal draw-in maneuver (DLL-ADIM), and double leg lowering with ribcage stabilization using a belt (DLL-belt). RA, IO, and EO EMG activity were analyzed via one-way repeated-measures analysis of variance (ANOVA). Bonferroni correction was performed where significant differences were identified (p<.017, .05/3). Results : RA, IO, and EO EMG activity differed significantly among the three exercises (p<.05). The use of post hoc pair-wise comparison with Bonferroni correction showed that RA muscle activity significantly differed among the three exercises (p<.017), and IO muscle activity in the DLL exercise was significantly decreased compared to the DLL-ADIM and DLL-belt exercises (p<.017). There was no significant difference between IO muscle activity for DLL-ADIM and DLL-belt exercises (p>.017). EO muscle activity in the DLL-belt exercise was significantly increased compared to both DLL and DLL-ADIM exercises (p<.017), but there was no significant difference between EO muscle activity for DLL and DLL-ADIM exercises (p>.017). Conclusion : DLL-belt is a more effective exercise for activating the abdominal muscles than DLL-ADIM exercise. Therefore, we recommend DLL-belt exercises for strengthening the abdominal muscles.

Correlation between Magnetic Resonance Image Signal Changes and Electromyographic Findings after Sciatic Nerve Transection in the Rat (백서의 좌골신경 절단 후 비복근의 자기공명영상 신호강도 변화와 근전도 소견의 관계)

  • Lee, Joo Hwan;Lee, Jang Chul;Kim, Dong Won;Park, Ki Young;Lee, Sung Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2000
  • Objectives : The evaluation of peripheral nerve injuries has traditionally relied on a clinical history, physical examination, and electrodiagnostic studies. The purpose of the present study was to examine serial magnetic resonance image(MRI) changes following acute muscle denervation under experimental conditions and to identify potential advantages and disadvantages of this use of MRI. Methods : An experimental transection of right sciatic nerve on Spargue-Dawley rats was performed. MRI was performed with T1-weighted spin-echo and STIR sequences. The imaging findings were compared with EMG in order to determine its sensitivity relative to this standard procedure. A simultaneous histopathological study provided information about the morphological basis of the imaging findings. Signal intensities were expressed as a ratio of abnormal to normal. Results : The signal intensity ratio of muscles with the STIR sequence was increased significantly at 2 weeks after sciatic nerve transection(p<0.05), although definite signal change was seen as early as 4 days postdenervation in one. EMG revealed significant denervation potential from 3 days after nerve transection. Diffuse cell atrophy was revealed hostologically at 2 weeks after transection, which was at the same time of significant signal change in MRI. Conclusion : MRI signal changes in denervated muscles secondary to nerve injury correlate with the degree of muscle atrophy on histologic examination. In addition to EMG, MRI can document the course of muscle atrophy and mesenchymal abnormalities in denervation. These results indicate that MRI can play a complementary role in the evaluation of patients with denervation.

  • PDF

Effects of Manual Postural Correction on the Trunk and Hip Muscle Activities During Bridging Exercises (도수적 자세교정이 슬링을 이용한 교각운동 시 체간과 하지 근육의 근활성도에 미치는 영향)

  • Kim, So-Young;Kim, Suhn-Yeop;Jang, Hyun-Jeong
    • Physical Therapy Korea
    • /
    • v.21 no.3
    • /
    • pp.38-44
    • /
    • 2014
  • The aim of this study was to investigate the effects of different postural correction in the electromyographic (EMG) activity of the trunk and hip muscles during bridging exercises. Twenty-four healthy subjects volunteered for this study. The muscle activity was recorded with surface electrodes over the erector spinae, multifidus, gluteus maximus (GM), and hamstring (Ham) muscles; it was measured by using surface EMG equipment under the following 3 experimental conditions: manual postural correction, verbal correction, and no correction. The maximal voluntary isometric contraction (MVIC) was determined for each muscle group in order to represent each exercise as a percentage of MVIC and allow for standardized comparison between subjects. A one-way analysis of variance was used to determine significant differences in the EMG activities of each muscle between the 3 experimental groups. During bridging exercises, the manual postural correction on normalized EMG activity of the GM muscle during manual guiding was significantly higher than during verbal guiding and without guiding (p<.05). Furthermore, the GM/Ham ratio was significantly higher during manual guiding than during verbal guiding and without guiding (p<.05). These findings suggest that the activities of the hip and trunk muscles may be favorably modified with manual guiding during bridging exercises.