• Title/Summary/Keyword: EMF method

Search Result 373, Processing Time 0.035 seconds

Maximum Power Recovery of Regenerative Braking in Electric Vehicles Based on Switched Reluctance Drive

  • Namazi, Mohammad Masoud;Saghaiannejad, Seyed Morteza;Rashidi, Amir;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.800-811
    • /
    • 2018
  • This paper presents a regenerative braking control scheme for Switched Reluctance Machine (SRM) drive in Electric Vehicles (EVs). The main purpose is to maximize the recovered energy during battery charging by taking into account the nonlinear physical characteristics of the Switched Reluctance Machine. The proposed regenerative braking method employs the back-EMF in the generation process as a complicated position-dependent voltage source. The proposed maximum power recovery (MPR) operation of the regenerative braking is first based on the maximization of the extracted power from the machine and then the maximization of the power transferred to the battery. The maximum power extraction (MPE) from SRM is based on maximizing the energy conversion ratio by the calculation of the optimum PWM switching duty cycle, turn-on, and turn-off angles. By using the impedance matching theorem that allows the maximum power transfer (MPT) of the MPE, the proposed MPR is achieved. The parametric averaged value modeling of the machine phase currents in the chopping control mode is used for MPR realization. By following this model, a nonlinear equivalent input resistance is derived for the battery internal resistance matching. The effectiveness of the proposed regenerative braking method is demonstrated through simulation results and experimental implementation.

Yoke Shape Design of Claw-Poles Stepping Motor Using Modified Magnetic Equivalent Circuit Method Including Magnetic Saturation Effect and Leakage Flux (자기 포화와 누설자속이 고려된 자기등가회로법을 이용한 클로우 폴 스테핑 모터의 요크 형상 설계)

  • Lee, Hyung-Woo;Cho, Su-Yeon;Bae, Jae-Nam;Son, Byoung-Ook;Park, Kyoung-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1942-1946
    • /
    • 2009
  • This paper presents a shape design process of Claw-Poles Stepping Motor(CPSM) using Modified Magnetic Equivalent Circuit Method(MMEC). Because this motor is adopted on low power devices, the motor size is a very small type. But it have a very strong permanent magnet. So magnetic saturation effect happens on yoke teeth of CPSM. Also this magnetic saturation effect causes more leakage flux component between yoke tooth have another pole. In this motor type, it is essential to design a shape of yoke teeth for avoiding the magnetic saturation effect and the leakage flux. In this paper, MMEC including the magnetic saturation effect and the leakage flux component was used for design process. Comparing with data calculated by using the MMEC and results analyzed by 3-D FEM, it could be stated that the design process with MMEC was reasonable. Finally, the model has the optimized shape of yoke teeth was compared with a conventional model for no-load Back EMF and torque at steady-state operation.

Position Sensor Fault Tolerant Control of Permanent Magnet Synchronous Generator (영구자석 동기발전기의 위치센서 고장 회피 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.351-357
    • /
    • 2011
  • Rotor position is essentially required for vector control of permanent magnet synchronous generator(PMSG) and position sensor such as encoder are generally used for the purpose of position sensing. However, the use of position sensor degrades reliability of PMSG control system. This paper presents position sensor fault tolerant control method for PMSG control system. Sensorless position estimator based on extended electromotive force(EMF) is operated in parallel with sensored vector control to provide rapid reconfiguration capability to sensorless vector control at the moment of position sensor fault detection. Experimental results show the effectiveness of the proposed method.

Development of a Method for Health Monitoring of Rotating Object for Mobility based on Multiple RLS Algorithm (다중 재귀 최소 자승 추정 알고리즘 기반 모빌리티의 회전체 건전성 모니터링 방법 개발)

  • Hanbyeol La;Jiung Lee;Kwangseok Oh
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.51-59
    • /
    • 2024
  • This study presents a method for health monitoring of rotating objects for mobility based on multiple recursive least squares(RLS) algorithms. The performance degradation of the rotating objects causes low handing / low driving performances and even fatal accidents. Therefore, health monitoring algorithm of rotating objects is one of the important technologies for mobility fail-safe and maintenance areas. In order for health monitoring of rotating objects, four recursive least squares algorithms with forgetting factor were designed in this study. The health monitoring algorithm proposed in this study consists of two steps such as uncertainty estimation and parameter changes estimation. In order to improve estimation accuracy, time delay function was applied to the estimated signals based on the first order differential equation and forgetting factors used for the RLS were reasonably tuned. The health monitoring algorithm was constructed in Matlab/Simulink environment and simulation-based performance evaluation was conducted using DC motor model. The evaluation results showed that the proposed algorithm estimates the actual parameter differences reasonably using velocity and current information.

A Compensation Method of Parameter Variations for the Speed-Sensorless Vector Control System of Induction Motors using Zero Sequence Third Harmonic Voltages (영상분 3고조파 전압을 이용한 속도센서없는 유도전동기 벡터제어 시스템의 파라미터 변동 보상)

  • Choe, Jeong-Su;Kim, Jin-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • A compensation method of the motor parameters using zero sequence third harmonic voltage is presented for the speed sensorless vector control of the induction motor considering saturation of the flux. Generally, the air-gap flux of the saturated induction motor contains the space harmonic components rotating with the synchronous frequency of the motor. Because the EMF of the saturated induction motor contains the zero sequence harmonic voltages at the neutral point of the motor, those harmonic voltages can be used as a saturation index. In this work, the rotor flux observer is firstly designed for the speed sensorless vector control of induction motor. And a novel measurement method of the space harmonic voltage and a compensation method of th LPF(Low Pass Filter) are proposed. For compensating the non-linear variations of the magnetizing inductance depending on the saturation level of the motor, the dominant third harmonic voltage of the motor is used as a saturation function of the air-gap flux. And the variation of the stator resistance owing to the motor temperature can also be measured with the phase angle between the impressed voltage vector and the zero sequence voltage. The validity of the proposed parameter compensation scheme in the speed sensorless vector control using rotor flux observer is verified by the result of the simulations and the experiments.

  • PDF

Wide-range Speed Control Scheme of BLDC Motor Based on the Hall Sensor Signal

  • Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.714-722
    • /
    • 2018
  • This paper presents a wide-range speed control scheme of brushless DC (BLDC) motors based on a hall sensor with separated low- and normal-speed controllers. However, the use of the hall sensor signal is insufficient to detect motor speed in the low-speed region because of low sensor resolution and time delay. In the proposed method, a micro-stepping current control method according to the torque angle variation is presented. In this mode, the motor current frequency and rotating angle are determined by the reference speed without the actual speed fed by the hall sensor. The detected torque angle is used to adjust the current value in a limited band to control the current value in accordance with the load. The torque angle is detected exactly at the changing point of the hall sensor signal. The rotor can follow the rotating flux with the variable torque angle. In a normal speed range, the conventional vector control scheme is used to control the motor current with a PI speed controller using the hall sensor. The torque characteristics are analyzed on the basis of the back EMF and current shape. To adopt the vector control scheme, the continuous rotor position is estimated by the measured speed and hall sensor position. At the mode changing point between low and normal speed range, the proper initial current command and reference rotor position are calculated. The calculated current command can reduce the torque ripple during transient mode. The proposed method is simple but effective in extending the speed control range of a conventional BLDC motor with hall sensor without the need for a high-resolution encoder. The effectiveness of the proposed method is verified by various experiments on a practical BLDC motor.

Maximum Torque Per Ampere Operation Point Tracking Control for Permanent Magnet Synchronous Motors (영구자석 동기전동기의 단위 전류 당 최대 토크 운전 점 추적 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.291-299
    • /
    • 2007
  • To operate a permanent magnet synchronous motor (PMSM) at a maximum torque per ampere (MTPA) operation point, the exact values of machine parameters such as inductances and back-EMF constant, which are sensitive to motor phase currents and temperature respectively, should be blown. An adaptive estimation method for on-line estimation of the machine parameters is not suitable for practical applications since it has difficulties in estimating exact values and requires complex mathematical calculations. The purpose of this paper is to present a simple MTPA operation point tracking control strategy for vector controlled PMSM drives with slow dynamic loads. The proposed method searches MTPA operation points by modulating current phase angle and observing the variation in command power. The current angle modulation strategy is designed to sense the effect of load variations in the command power. Therefore, the proposed method can track the MTPA operation points of the PMSM regardless of load variations. Computer simulation and experimental study is also presented to show the effectiveness of the proposed method.

A Study on the SAR Measurement System Validation at 150 MHz Band (150 MHz 대역에서의 SAR 측정시스템의 유효성 연구)

  • Choi, Donggeun;Kim, Kihwea;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.1008-1016
    • /
    • 2013
  • SAR measurement which was applied only to the mobile phone has been expanded in the Korean radio regulation law to the portable wireless communication equipments within 20 cm from the human body since Jan. 2012. The two-way radio operating at 150 MHz frequency band was newly included following the revised radio regulation in the target equipment of measurement. SAR measurement system at 150 MHz satisfying this regulation is necessary accordingly for SAR conformity assessment. The international SAR measurement standard(IEC 62209-2) includes the evaluation method on frequencies above 300 MHz, and the commercial SAR measurement system can measure SAR above 300 MHz only. The size of the reference dipole antenna(760 mm, return loss: -27.57 dB) and flat phantom ($1,300 mm(L){\times}900 mm(W){\times}200 mm(H)$), targeted SAR values for numerical analysis(1 g: 1.08 W/kg, 10 g: 0.77 W/kg) for SAR validation evaluation at 150 MHz frequency are proposed in this paper. The suggested dipole antenna and flat phantom are assembled and used to verify the conformity assessment of commercial SAR measurement system. The measured SAR values of 1 g and 10 g were obtained respectively to be 1.13 W/kg, 0.81 W/kg, and they satisfied the effective range(within ${\pm}10$ %) of IEC international standard. The standards based on this study are expected to be used for the domestic SAR measurement standard and IEC(International Electrotechnical Commission) international standard.

Sensorless Control Method in IPMSM Position Sensor Fault for HEV

  • Kim, Sung-Joo;Lee, Yong-Kyun;Lee, Ju-Suk;Lee, Kwang-Woon;Kwon, Taesuk;Mok, Hyungsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1056-1061
    • /
    • 2013
  • The widely used motors in HEV(Hybrid Electric Vehicles) are IPMSM(Interior Permanent Magnet Synchronous Motor) which has no rotor heat, higher efficiency and advantageous in volume and weight comparing with other motors. For vector control of IPMSM, position information of rotor is required but Resolver is mainly used as the detecting sensor. However, the use of position sensors will reduce the system reliability of hybrid electric vehicles. In this paper, a way to control the motor by sensorless was proposed at the event of sensor failure. We also implemented IPMSM sensorless operation by the expanded EMF(Electro Motive Force) voltage way and harmonic voltage which is applying in the low speed area. And we proposed how to change with sensorless control by detecting the position sensors failure and verified it through experiments.

Study on Machine Characteristics in Interior Permanent Magnet Synchronous Motor According to Pole/Slot Combinations with Radial Vibration Force Consideration (극수/슬롯수 조합에 따른 Radial Vibration Force 고려한 매입자석 동기모터 특성 연구)

  • Fang, Liang;Lee, Su-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.949-954
    • /
    • 2011
  • This paper presents a comparative study on motor characteristics with specific consideration of radial vibration force in interior permanent magnet synchronous motors (IPMSM) according to pole/slot combinations. Three IPMSM models, 16-pole/15-slot design, 16-pole/18-slot design and 16-pole/24-slot design are built, in which 16-pole/15-slot and 16-pole/18-slot designs provide high winding factor and 16-pole/24-slot design is known as a general pole/slot combination. By coupling finite element analysis (FEA) with equivalent circuit method, motor characteristics, back electro-motive force (Back-EMF), inductances, cogging torque, etc. as well as machine output performances are analyzed and compared. The radial vibration force (RVF) distribution in air gap causing stator vibration and noise is interested. It is expected that this study help with appropriate choice of pole/slot combination in IPMSM design.