• 제목/요약/키워드: EM Algorithm

검색결과 377건 처리시간 0.025초

EMSAC 알고리듬을 이용한 대응점 추출에 관한 연구 (Extraction of Corresponding Points Using EMSAC Algorithm)

  • 예수영;전아영;전계록;남기곤
    • 대한전자공학회논문지SP
    • /
    • 제44권4호통권316호
    • /
    • pp.44-50
    • /
    • 2007
  • 본 논문에서는 영상으로부터 획득된 대응점을 추출하기 위한 새로운 알고리듬을 제안한다. 제안하는 EMSAC 알고리듬은 EM과 RANSAC에 기반을 두고 있다. RANSAC 과정에서는 N개의 대응점들이 랜덤하게 선택되어진다. 랜덤으로 N개의 대응점을 선택하는 과정은 최대 반복횟수 내에서 적절한 파라미터가 추정될 때까지 반복된다. 이는 시간이 오래 걸리고 때로는 적절한 파라미터에 수렴하지 않는 경우도 발생한다. 그러므로 본 연구에서는 RANSAC 알고리듬에서 N개 대응점을 임의로 선택하는 대신 최적의 해가 존재할 확률이 높은 영역에서 대응점을 선택하는 EMSAC 알고리듬을 사용하였다. EMSAC 알고리듬은 반복적인 선택을 줄여 안정적이고 처리 속도가 빠른 대응점들을 추출할 수 있다.

커널필터링 기법을 이용한 건강비용의 효과적인 지출에 관한 군집화 분석 (Clustering Analysis of Effective Health Spending Cost based on Kernel Filtering Techniques)

  • 정용규;최영진;차병헌
    • 서비스연구
    • /
    • 제5권2호
    • /
    • pp.25-33
    • /
    • 2015
  • 데이터마이닝은 방대한 데이터를 기반으로 정보를 추출하는 방법으로 많은 분야에 적용하고 있으며 특히 보건의료 데이터를 다루는 기법으로 많이 활용 되고 있다. 하지만 데이터가 다양하고 방대해짐에 따라 데이터들을 완벽하게 다룰 수 있는 알고리즘이 개발되지 못한 현황이다. 따라서 본 논문에서는 군집화 알고리즘 중의 하나인 DBSCAN 알고리즘과 EM 알고리즘의 성능을 동일한 데이터에 대하여 분석을 시도하였다. 이를 위하여 DBSACN과 EM 알고리즘에 따른 변화를 Health expenditure 실험데이터의 결과를 기반으로 분석 하였고 더욱 정확한 실험과 더욱 정확한 결과를 알아내기 위하여 Kernel Filtering을 통하여 정확한 데이터분석을 시도하였다. 본 연구에서는 알고리즘의 기술적 성능을 비교한 것을 물론이고 성능을 높이기 위한 시도를 하였다. 이를 통하여 확장한 알고리즘에 따른 성능의 변화와 실험데이터의 적용결과를 기반으로 비교하고 이를 분석하게 되었다. 특히 의료기관을 이용하는 다양한 군집으로부터 데이터 레코드를 수집하여 의료 서비스에 대한 효과적인 비용 지출을 권장할 수 있도록 실험하였다.

방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구 (A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems)

  • 하우석;김수미;박민재;이동수;이재성
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권5호
    • /
    • pp.459-467
    • /
    • 2009
  • 목적: ML-EM (The maximum likelihood-expectation maximization) 기법은 방출과 검출 과정에 대한 통계학적 모델에 기반한 재구성 알고리즘이다. ML-EM은 결과 영상의 정확성과 유용성에 있어 많은 이점이 있는 반면 반복적인 계산과 방대한 작업량 때문에 CPU(central processing unit)로 처리할 때 상당한 연산시간이 소요되었다. 본 연구에서는 GPU(graphic processing unit)의 병렬 처리 기술을 ML-EM 알고리즘에 적용하여 영상을 재구성하였다. 대상 및 방법: 엔비디아사(社)의 CUDA 기술을 이용하여 ML-EM 알고리즘의 투사 및 역투사 과정을 병렬화 전략을 구상하였으며 Geforce 9800 GTX+ 그래픽 카드를 이용하여 병렬화 연산을 수행하여 기존의 단일 CPU기반 연산법과 비교하였다. 각 반복횟수마다 투사 및 역투사 과정에 걸리는 총 지연 시간과 퍼센트 오차(percent error)를 측정하였다. 총 지연 시간에는 RAM과 GPU 메모리 간의 데이터 전송 지연 시간도 포함하였다. 결과: 모든 반복횟수에 대해 CPU 기반 ML-EM 알고리즘보다 GPU 기반 알고리즘이 더 빠른 성능을 나타내는 것을 확인하였다. 단일 CPU 및 GPU 기반 ML-EM의 32번 반복연산에 있어 각각 3.83초와 0.26초가 걸렸으며 GPU의 병렬연산의 경우 15배 정도의 개선된 성능을 보였다. 반복횟수가 1024까지 증가하였을 경우, CPU와 GPU 기반 알고리즘은 각각 18분과 8초의 연산시간이 걸렸다. GPU 기반 알고리즘이 약 135배 빠른 처리속도를 보였는데 이는 단일 CPU 계산이 특정 반복횟수 이후 나타나는 시간 지연에 따른 것이다. 결과적으로, GPU 기반 계산이 더 작은 편차와 빠른 속도를 보였다. 결론: ML-EM 알고리즘에 기초한 GPU기반 병렬 계산이 처리 속도와 안정성을 더 증진시킴을 확인하였으며 이를 활용해 다른 영상 재구성 알고리즘에도 적용시킬 수 있을 것으로 기대한다.

EM알고리즘을 이용한 중도절단화상에 대한 복원 (Restoration for the censored image vai EM algorithm)

  • 김승구
    • 응용통계연구
    • /
    • 제10권2호
    • /
    • pp.309-323
    • /
    • 1997
  • 사진과 같은 영상매체를 통한 화상들은 대부분 중도절단과정을 거친 자료임에도 불구하고 정상자료로 취급하여 복원하는 경우가 많다. 이때 편의를 갖는 복원화상을 얻게 된다. 그러나 화상복원 분야에서 이에 대한 인식을 거의 발견할 수 없다. 이에 본 논문에서는 '가우시안' 잡음에 의해 오염된 중도절단화상에 대해 EM알고리즘에 의한 복원방법을 소개한다. 그리고 실험을 통해 중도절단된 모의화상에 대해 복원효과를 보인다.

  • PDF

확률적 순서를 갖는 다변량분포에서 불완전자료에 의한 추정 (Estimation from Incomplete Data in Multivariate Distributions under Stochastic Ordering)

  • Kwang Mo Jeoung
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.145-157
    • /
    • 1994
  • 확률적 순서관계를 갖는 다변량분포에서 얻어진 자료가 결측값을 갖는 불완전한 자료일 때, EM 알고리즘을 이용한 최우추정법을 논의하였다. 본 논문에서는 관찰값들이 부분적으로 분류된 분할표자료에 국한하여 연구되었으며 기존의 동위회귀추정 프로그램을 써서 EM을 수행할 수 있는 이점이 있다. 예를 통하여 제안된 추정법을 설명한다.

  • PDF

수정된 EM알고리즘을 이용한 GMM 화자식별 시스템의 성능향상 (Performance Enhancement of Speaker Identification System Based on GMM Using the Modified EM Algorithm)

  • 김성종;정익주
    • 음성과학
    • /
    • 제12권4호
    • /
    • pp.31-42
    • /
    • 2005
  • Recently, Gaussian Mixture Model (GMM), a special form of CHMM, has been applied to speaker identification and it has proved that performance of GMM is better than CHMM. Therefore, in this paper the speaker models based on GMM and a new GMM using the modified EM algorithm are introduced and evaluated for text-independent speaker identification. Various experiments were performed to evaluate identification performance of two algorithms. As a result of the experiments, the GMM speaker model attained 94.6% identification accuracy using 40 seconds of training data and 32 mixtures and 97.8% accuracy using 80 seconds of training data and 64 mixtures. On the other hand, the new GMM speaker model achieved 95.0% identification accuracy using 40 seconds of training data and 32 mixtures and 98.2% accuracy using 80 seconds of training data and 64 mixtures. It shows that the new GMM speaker identification performance is better than the GMM speaker identification performance.

  • PDF

Bayesian 적응 방식을 이용한 잡음음성 인식에 관한 연구 (A Study on Noisy Speech Recognition Using a Bayesian Adaptation Method)

  • 정용주
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.21-26
    • /
    • 2001
  • 본 논문에서는 잡음에 강인한 음성인식을 위해서 expectation-maximization (EM) 방식을 이용하여 잡음의 평균값을 추정하는 새로운 알고리듬을 제안하였다. 제안된 알고리듬에서는 온라인상의 인식용 음성이 직접 Bayesian 적응을 위해서 사용되며, 또한 훈련데이터를 이용하여 잡음의 평균값에 대한 사전 (prior) 분포를 알아낸 후 Bayesian 적응시에 이용한다. 잡음 음성의 모델링을 위해서는 PMC (parallel model combination) 방식을 이용하였고, 제안된 방식을 이용하여 자동차 잡음 환경 하에서 인식 실험을 수행한 결과, 기존의 PMC 방식에 비해서 향상된 인식성능을 보임을 알 수 있었다.

  • PDF

순환모형에 대한 EM 알고리즘의 초기값 선정방법의 개선 (An improvement on initial value selection in applying an EM algorithm for recursive models)

  • 정미숙;김성호
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.433-447
    • /
    • 1999
  • 검사관련 능력과 문항점수사이의 관계를 모형화하기 위해 사용한 순환모형에서 관측불능인 능력상대변수를 비롯한 모든 변수들이 범주형 변수라 가정하자. 이 범주형 자료를 위한 모수추정문제를 다루기 위해 EM 방법을 이용했는데, EM 방법은 사용하기에 편리하지만 순환모형에 대한 추정값이 적절하지 않는 경우가 발생한다. 그 주된 원인중의 하나로 초기값 선정의 잘못을 들 수 있는데, 본 논문에서는 이 외에 구조상의 결함도 그 원인이 됨을 경험적으로 보았다. 따라서 구조적 결함을 먼저 해결하면 보다 효과적인 초기값을 선정할 수 있으리가 기대한다.

  • PDF

우리나라 계통에서의 상태추정 알고리즘 및 향후 개선방향 (State Estimation Algorithm in Korea Power System & Improvement Direction)

  • 전재룡;여현근;송태용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.97-98
    • /
    • 2008
  • 전력계통이 커지고 복잡해짐에 따라 전력계통의 상태를 정확하게 파악하고 안정하게 운영하는데 EMS의 역할이 더욱 커지고 있다. EMS에서 상태추정은 다른 응용프로그램에 대한 기본 자료를 제공하므로 중요하다. 우리나라는 EMS와 MOS를 이용하여 전력계통을 안정하게 운영하고 있다. 본 논문에서는 EMS와 MOS의 상태추정 알고리즘을 소개하고 차이점을 비교하였다. 또한 상태추정 파라미터 운영현황을 분석하여 이를 바탕으로 앞으로의 개선방향을 제시하였다.

  • PDF

Application of SOLAS to the Multiple Imputation for Missing Data

  • Moon, Sung-Ho;Kim, Hyun-Jeong;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.579-590
    • /
    • 2003
  • When we analyze incomplete data, i.e., data with missing values, we need treatment for the missing values. A common way to deal with this problem is to delete the cases with missing values. Various other methods have been developed. Among them are EM algorithm and regression algorithm which can estimate missing values and impute the missing elements with the estimated values. In this paper, we introduce multiple imputation software SOLAS which generates multiple data sets and imputes with them.

  • PDF