본 논문에서는 영상으로부터 획득된 대응점을 추출하기 위한 새로운 알고리듬을 제안한다. 제안하는 EMSAC 알고리듬은 EM과 RANSAC에 기반을 두고 있다. RANSAC 과정에서는 N개의 대응점들이 랜덤하게 선택되어진다. 랜덤으로 N개의 대응점을 선택하는 과정은 최대 반복횟수 내에서 적절한 파라미터가 추정될 때까지 반복된다. 이는 시간이 오래 걸리고 때로는 적절한 파라미터에 수렴하지 않는 경우도 발생한다. 그러므로 본 연구에서는 RANSAC 알고리듬에서 N개 대응점을 임의로 선택하는 대신 최적의 해가 존재할 확률이 높은 영역에서 대응점을 선택하는 EMSAC 알고리듬을 사용하였다. EMSAC 알고리듬은 반복적인 선택을 줄여 안정적이고 처리 속도가 빠른 대응점들을 추출할 수 있다.
데이터마이닝은 방대한 데이터를 기반으로 정보를 추출하는 방법으로 많은 분야에 적용하고 있으며 특히 보건의료 데이터를 다루는 기법으로 많이 활용 되고 있다. 하지만 데이터가 다양하고 방대해짐에 따라 데이터들을 완벽하게 다룰 수 있는 알고리즘이 개발되지 못한 현황이다. 따라서 본 논문에서는 군집화 알고리즘 중의 하나인 DBSCAN 알고리즘과 EM 알고리즘의 성능을 동일한 데이터에 대하여 분석을 시도하였다. 이를 위하여 DBSACN과 EM 알고리즘에 따른 변화를 Health expenditure 실험데이터의 결과를 기반으로 분석 하였고 더욱 정확한 실험과 더욱 정확한 결과를 알아내기 위하여 Kernel Filtering을 통하여 정확한 데이터분석을 시도하였다. 본 연구에서는 알고리즘의 기술적 성능을 비교한 것을 물론이고 성능을 높이기 위한 시도를 하였다. 이를 통하여 확장한 알고리즘에 따른 성능의 변화와 실험데이터의 적용결과를 기반으로 비교하고 이를 분석하게 되었다. 특히 의료기관을 이용하는 다양한 군집으로부터 데이터 레코드를 수집하여 의료 서비스에 대한 효과적인 비용 지출을 권장할 수 있도록 실험하였다.
목적: ML-EM (The maximum likelihood-expectation maximization) 기법은 방출과 검출 과정에 대한 통계학적 모델에 기반한 재구성 알고리즘이다. ML-EM은 결과 영상의 정확성과 유용성에 있어 많은 이점이 있는 반면 반복적인 계산과 방대한 작업량 때문에 CPU(central processing unit)로 처리할 때 상당한 연산시간이 소요되었다. 본 연구에서는 GPU(graphic processing unit)의 병렬 처리 기술을 ML-EM 알고리즘에 적용하여 영상을 재구성하였다. 대상 및 방법: 엔비디아사(社)의 CUDA 기술을 이용하여 ML-EM 알고리즘의 투사 및 역투사 과정을 병렬화 전략을 구상하였으며 Geforce 9800 GTX+ 그래픽 카드를 이용하여 병렬화 연산을 수행하여 기존의 단일 CPU기반 연산법과 비교하였다. 각 반복횟수마다 투사 및 역투사 과정에 걸리는 총 지연 시간과 퍼센트 오차(percent error)를 측정하였다. 총 지연 시간에는 RAM과 GPU 메모리 간의 데이터 전송 지연 시간도 포함하였다. 결과: 모든 반복횟수에 대해 CPU 기반 ML-EM 알고리즘보다 GPU 기반 알고리즘이 더 빠른 성능을 나타내는 것을 확인하였다. 단일 CPU 및 GPU 기반 ML-EM의 32번 반복연산에 있어 각각 3.83초와 0.26초가 걸렸으며 GPU의 병렬연산의 경우 15배 정도의 개선된 성능을 보였다. 반복횟수가 1024까지 증가하였을 경우, CPU와 GPU 기반 알고리즘은 각각 18분과 8초의 연산시간이 걸렸다. GPU 기반 알고리즘이 약 135배 빠른 처리속도를 보였는데 이는 단일 CPU 계산이 특정 반복횟수 이후 나타나는 시간 지연에 따른 것이다. 결과적으로, GPU 기반 계산이 더 작은 편차와 빠른 속도를 보였다. 결론: ML-EM 알고리즘에 기초한 GPU기반 병렬 계산이 처리 속도와 안정성을 더 증진시킴을 확인하였으며 이를 활용해 다른 영상 재구성 알고리즘에도 적용시킬 수 있을 것으로 기대한다.
사진과 같은 영상매체를 통한 화상들은 대부분 중도절단과정을 거친 자료임에도 불구하고 정상자료로 취급하여 복원하는 경우가 많다. 이때 편의를 갖는 복원화상을 얻게 된다. 그러나 화상복원 분야에서 이에 대한 인식을 거의 발견할 수 없다. 이에 본 논문에서는 '가우시안' 잡음에 의해 오염된 중도절단화상에 대해 EM알고리즘에 의한 복원방법을 소개한다. 그리고 실험을 통해 중도절단된 모의화상에 대해 복원효과를 보인다.
확률적 순서관계를 갖는 다변량분포에서 얻어진 자료가 결측값을 갖는 불완전한 자료일 때, EM 알고리즘을 이용한 최우추정법을 논의하였다. 본 논문에서는 관찰값들이 부분적으로 분류된 분할표자료에 국한하여 연구되었으며 기존의 동위회귀추정 프로그램을 써서 EM을 수행할 수 있는 이점이 있다. 예를 통하여 제안된 추정법을 설명한다.
Recently, Gaussian Mixture Model (GMM), a special form of CHMM, has been applied to speaker identification and it has proved that performance of GMM is better than CHMM. Therefore, in this paper the speaker models based on GMM and a new GMM using the modified EM algorithm are introduced and evaluated for text-independent speaker identification. Various experiments were performed to evaluate identification performance of two algorithms. As a result of the experiments, the GMM speaker model attained 94.6% identification accuracy using 40 seconds of training data and 32 mixtures and 97.8% accuracy using 80 seconds of training data and 64 mixtures. On the other hand, the new GMM speaker model achieved 95.0% identification accuracy using 40 seconds of training data and 32 mixtures and 98.2% accuracy using 80 seconds of training data and 64 mixtures. It shows that the new GMM speaker identification performance is better than the GMM speaker identification performance.
본 논문에서는 잡음에 강인한 음성인식을 위해서 expectation-maximization (EM) 방식을 이용하여 잡음의 평균값을 추정하는 새로운 알고리듬을 제안하였다. 제안된 알고리듬에서는 온라인상의 인식용 음성이 직접 Bayesian 적응을 위해서 사용되며, 또한 훈련데이터를 이용하여 잡음의 평균값에 대한 사전 (prior) 분포를 알아낸 후 Bayesian 적응시에 이용한다. 잡음 음성의 모델링을 위해서는 PMC (parallel model combination) 방식을 이용하였고, 제안된 방식을 이용하여 자동차 잡음 환경 하에서 인식 실험을 수행한 결과, 기존의 PMC 방식에 비해서 향상된 인식성능을 보임을 알 수 있었다.
검사관련 능력과 문항점수사이의 관계를 모형화하기 위해 사용한 순환모형에서 관측불능인 능력상대변수를 비롯한 모든 변수들이 범주형 변수라 가정하자. 이 범주형 자료를 위한 모수추정문제를 다루기 위해 EM 방법을 이용했는데, EM 방법은 사용하기에 편리하지만 순환모형에 대한 추정값이 적절하지 않는 경우가 발생한다. 그 주된 원인중의 하나로 초기값 선정의 잘못을 들 수 있는데, 본 논문에서는 이 외에 구조상의 결함도 그 원인이 됨을 경험적으로 보았다. 따라서 구조적 결함을 먼저 해결하면 보다 효과적인 초기값을 선정할 수 있으리가 기대한다.
전력계통이 커지고 복잡해짐에 따라 전력계통의 상태를 정확하게 파악하고 안정하게 운영하는데 EMS의 역할이 더욱 커지고 있다. EMS에서 상태추정은 다른 응용프로그램에 대한 기본 자료를 제공하므로 중요하다. 우리나라는 EMS와 MOS를 이용하여 전력계통을 안정하게 운영하고 있다. 본 논문에서는 EMS와 MOS의 상태추정 알고리즘을 소개하고 차이점을 비교하였다. 또한 상태추정 파라미터 운영현황을 분석하여 이를 바탕으로 앞으로의 개선방향을 제시하였다.
Journal of the Korean Data and Information Science Society
/
제14권3호
/
pp.579-590
/
2003
When we analyze incomplete data, i.e., data with missing values, we need treatment for the missing values. A common way to deal with this problem is to delete the cases with missing values. Various other methods have been developed. Among them are EM algorithm and regression algorithm which can estimate missing values and impute the missing elements with the estimated values. In this paper, we introduce multiple imputation software SOLAS which generates multiple data sets and imputes with them.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.