• 제목/요약/키워드: ELM Model

검색결과 69건 처리시간 0.024초

Pseudoinverse Matrix Decomposition Based Incremental Extreme Learning Machine with Growth of Hidden Nodes

  • Kassani, Peyman Hosseinzadeh;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.125-130
    • /
    • 2016
  • The proposal of this study is a fast version of the conventional extreme learning machine (ELM), called pseudoinverse matrix decomposition based incremental ELM (PDI-ELM). One of the main problems in ELM is to determine the number of hidden nodes. In this study, the number of hidden nodes is automatically determined. The proposed model is an incremental version of ELM which adds neurons with the goal of minimization the error of the ELM network. To speed up the model the information of pseudoinverse from previous step is taken into account in the current iteration. To show the ability of the PDI-ELM, it is applied to few benchmark classification datasets in the University of California Irvine (UCI) repository. Compared to ELM learner and two other versions of incremental ELM, the proposed PDI-ELM is faster.

Efficient Neural Network for Downscaling climate scenarios

  • Moradi, Masha;Lee, Taesam
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.157-157
    • /
    • 2018
  • A reliable and accurate downscaling model which can provide climate change information, obtained from global climate models (GCMs), at finer resolution has been always of great interest to researchers. In order to achieve this model, linear methods widely have been studied in the past decades. However, nonlinear methods also can be potentially beneficial to solve downscaling problem. Therefore, this study explored the applicability of some nonlinear machine learning techniques such as neural network (NN), extreme learning machine (ELM), and ELM autoencoder (ELM-AE) as well as a linear method, least absolute shrinkage and selection operator (LASSO), to build a reliable temperature downscaling model. ELM is an efficient learning algorithm for generalized single layer feed-forward neural networks (SLFNs). Its excellent training speed and good generalization capability make ELM an efficient solution for SLFNs compared to traditional time-consuming learning methods like back propagation (BP). However, due to its shallow architecture, ELM may not capture all of nonlinear relationships between input features. To address this issue, ELM-AE was tested in the current study for temperature downscaling.

  • PDF

정수장 운영효율 향상을 위한 ELM 기반 단기 물 수요 예측 (ELM based short-term Water Demand Prediction for Effective Operation of Water Treatment Plant)

  • 최기선;이동훈;김성환;이경우;전명근
    • 조명전기설비학회논문지
    • /
    • 제23권9호
    • /
    • pp.108-116
    • /
    • 2009
  • 본 논문에서는 단기 물 수요 예측에 대한 모델구현을 위해 MLP의 과도학습 문제를 해결할 수 있고 빠른 학습이 가능한 ELM 기반 단기 물 수요 예측 알고리즘을 제안한다. 제시된 알고리즘의 검증을 위해 2007년도와 2008년도 충남지역 광역상수도인 A정수장에서 취득된 데이터를 분석하여 알고리즘 구현의 정확도 분석에 사용하였다. 실험 결과 MLP모델은 MAPE가 5.82[%]인 반면, 제안된 방법인 ELM기반 모델은 5.61[%]로 성능이 향상된 것으로 나타났다. 또한, MLP모델은 학습에 소요된 시간이 7.57초인 반면, ELM 기반 모델은 0.09초로 빠른 학습이 가능함을 알 수 있었다. 따라서 제안된 ELM 기반 알고리즘은 정수장의 효율적 운영을 위한 단기 물 수요 예측에 활용할 수 있음을 보였다.

ELM을 이용한 일별 태양광발전량 예측모델 개발 (Development of Daily PV Power Forecasting Models using ELM)

  • 이창성;지평식
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.164-168
    • /
    • 2015
  • Due to the uncertainty of weather, it is difficult to construct an accurate forecasting model for daily PV power generation. It is very important work to know PV power in next day to manage power system. In this paper, correlation analysis between weather and power generation was carried out and daily PV power forecasting models based on Extreme Learning Machine(ELM) was presented. Performance of district ELM model was compared with single ELM model. The proposed method has been tested using actual data set measured in 2014.

Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine

  • Yi, Hye-Suk;Lee, Bomi;Park, Sangyoung;Kwak, Keun-Chang;An, Kwang-Guk
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, we designed a data-driven model to predict chlorophyll-a using M5P model tree and extreme learning machine (ELM). The Juksan weir in the Youngsan River has high chlorophyll-a, which is the primary indicator of algal bloom every year. Short-term algal bloom prediction is important for environmental management and ecological assessment. Two models were developed and evaluated for short-term algal bloom prediction. M5P is a classification and regression-analysis-based method, and ELM is a feed-forward neural network with fast learning using the least square estimate for regression. The dataset used in this study includes water temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a, which were collected on a daily basis from January 2013 to December 2016. The M5P model showed that the prediction model after one day had the highest performance power and dropped off rapidly starting with predictions after three days. Comparing the performance power of the ELM model with the M5P model, it was found that the performance power of the 1-7 d chlorophyll-a prediction model was higher. Moreover, in a period of rapidly increasing algal blooms, the ELM model showed higher accuracy than the M5P model.

자동 분할과 ELM을 이용한 심장질환 분류 성능 개선 (Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.32-43
    • /
    • 2009
  • 본 논문은 자동 분할과 extreme learning machine (ELM)을 이용하여 연속 심음신호에 의한 심장질환 분류의 성능을 개선한다. 자동 분할을 위한 전처리 단계에서 비정상적인 심음신호는 심잡음 (murmur)과 클릭음 (click)을 포함하고 있기 때문에 제1음 (S1)과 제2음 (S2) 시작점 검출 결과가 부정확하거나 누락되어 기존의 심장질환 분류 시스템의 정확도를 저하시키게된다. 이러한 분할 오류에 의한 성능 저하를 감소하기 위해 S1 및 S2의 위치를 찾고, S1 및 S2의 시간 차이를 이용하여 부정확한 시작점을 교정한 다음 한 주기 심음 신호를 추출한다. 특징벡터로는 단일 주기의 심음 신호로부터 추출된 멜척도 필터뱅크 로그 에너지 계수와 포락선을 사용한다. 심장질환을 분류하기 위하여 한 개의 은닉층을 가진 ELM 알고리듬을 사용한다. 9가지 심장질환 분류 실험을 수행한 결과, 제안 방법은 81.6%의 분류 정확도를 나타내며, multi-layer perceptron(MLP), support vector machine (SVM), hidden Markov model (HMM) 중에서 가장 높은 분류 정확도를 보여준다.

Development of machine learning model for automatic ELM-burst detection without hyperparameter adjustment in KSTAR tokamak

  • Jiheon Song;Semin Joung;Young-Chul Ghim;Sang-hee Hahn;Juhyeok Jang;Jungpyo Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.100-108
    • /
    • 2023
  • In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the input signal patterns and overcomes the problems of existing detection algorithms, such as the prominence algorithm and those of differential methods with high sensitivity for the threshold and signal intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into 11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating characteristic curves, our model shows a positive prediction rate and a true prediction rate of approximately 90% each, which is comparable to the best detection performance afforded by other algorithms using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology used in our model can be beneficial for determining plasma properties, such as the ELM frequency from big data measured in multiple experiments using machines from the KSTAR device and ITER. Additionally, it is applicable to feature detection in the time-series data of other engineering fields.

ELM(Extreme Learning Machine)기반의 단기 물 수요예측 알고리즘 (The short-term water forecasting based on ELM model)

  • 신강욱;홍성택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1728-1729
    • /
    • 2011
  • 본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측알고리즘 개발에 있어서, 지방 소도시 지역의 물 공급패턴에 대한 영향인자를 도출하기 위하여 기상환경인자와 과거 물 공급량에 대한 상관성 분석을 실시하였다. 그리고, 신경회로망 이론 중 ELM알고리즘을 적용한 단기 물 수요예측알고리즘을 개발하여 현장 적용성을 검토하고자 한다.

  • PDF

ELM을 이용한 특수일 최대 전력수요 예측 모델 개발 (Development of Peak Power Demand Forecasting Model for Special-Day using ELM)

  • 지평식;임재윤
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.74-78
    • /
    • 2015
  • With the improvement of living standards and economic development, electricity consumption continues to grow. The electricity is a special energy which is hard to store, so its supply must be consistent with the demand. The objective of electricity demand forecasting is to make best use of electricity energy and provide balance between supply and demand. Hence, it is very important work to forecast electricity demand with higher precision. So, various forecasting methods have been developed. They can be divided into five broad categories such as time series models, regression based model, artificial intelligence techniques and fuzzy logic method without considering special-day effects. Electricity demand patterns on holidays can be often idiosyncratic and cause significant forecasting errors. Such effects are known as special-day effects and are recognized as an important issue in determining electricity demand data. In this research, we developed the power demand forecasting method using ELM(Extreme Learning Machine) for special day, particularly, lunar new year and Chuseok holiday.

정보보안 인식이 신뢰 형성에 미치는 연구 (A Study on Awareness of Information Security Influencing Trustness)

  • 정재훈;최명길
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1225-1233
    • /
    • 2015
  • 본 연구는 정교화 가능성 모델(Elaboration Likelihood Model, ELM)의 관점에서 E-Commerce에서 발생하는 소비자의 정보보안 인식의 영향을 조사하고, 소비자의 관여도와 경험의 조절 효과를 분석한 것이다. 소비자는 E-Commerce에 대한 관여도와 경험의 수준에 따라 E-Commerce 웹사이트를 사용하고 있다. 본 연구는 ELM을 기반으로 하여 소비자의 E-Commerce에 대한 정보보안 인식이 형성되고, 소비자의 관여도, 경험의 정도에 따라 그 효과 크기가 조절된다는 것을 설명하는 이론적 모형을 제시하고, 실증 연구를 통해 모형을 확인한다. 연구 결과, 소비자는 E-Commerce 웹사이트에 대한 인식의 유형에 따라 서로 다른 경로를 통해 E-Commerce 업체에 대한 신뢰 태도를 형성했고, 그 영향을 소비자의 관여도와 경험이 조절했다. E-Commerce에서 소비자의 정보보안 인식유형을 연구하는 것은 신뢰 형성에 대한 새로운 관점을 제시할 것으로 생각된다.