• Title/Summary/Keyword: EHD induction micropump

Search Result 2, Processing Time 0.015 seconds

A Computational Fluid Dynamics Analysis on an Electrohydrodynamics Induction Micropump (전기수력학적 유도 마이크로 펌프에 대한 전산유체역학 해석)

  • Lee, Byoung-Seo;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1851-1856
    • /
    • 2008
  • A numerical program based on computational fluid dynamics has been developed to simulate characteristics of an EHD induction micropump. The ambiguity of boundary conditions was removed by adopting an equation formulated for electric potential as the dependent variable. The calculations show that the dependency of frequency agrees well with the experiments and the previous analysis. The instability, caused by backflows, is getting stronger as the channel depth increases, which is consistent with experiments. The present study reveals that it is due to the limit in the penetration depth which the electric field can affect. Despite the disadvantage of large channel depth, there is a certain optimal depth for the maximum flow rate.

  • PDF

A Fabrication and Experiment of Induction-type EHD Micropump with Temperature Gradient (온도차를 이용한 유도형 마이크로 EHD 펌프의 제작 및 실험)

  • Youn, Yong-Kyu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.198-200
    • /
    • 1993
  • This paper represents the experimental results of electrohrdrodynamic(EHD) micropump driven by traveling- wave voltage. We fabricated 60 electrodes array with $100{\mu}m$ width and $100{\mu}m$ interval on the pyrex glass. On that glass we fabricated the micro channel which had the cross section of 3mm by 0.5mm. This pump was driven by 6 phase square traveling-wave voltage. We used the corn oil for experiments and increased the temperature of fluid by resistive heater. An optical microscope with CCD camera and monitor was used for observation. The fluid velocity was large for the large driving voltage and the high temperature. This EHD pump had the fluid velocity in specific frequency (near 1Hz) which had relation to the charge relaxation time in that oil.

  • PDF