• Title/Summary/Keyword: EGR Rate

Search Result 164, Processing Time 0.027 seconds

Effects of Bio-diesel blending rate on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with EGR rate (커먼레일식 디젤기관의 EGR율과 바이오디젤 혼합율에 따른 연소 및 배기 특성)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this study is to investigate the specific characteristics of combustion and exhaust emissions on a 4-cylinder common rail diesel engine as EGR rate and the rate of blended bio-diesel was altered. Bio-diesel fuel which is a sort of alternative fuels can be adapted to diesel engine directly without modifying. This study was performed to 2000rpm of engine speed with torque 30Nm while EGR rate and the rate of blended bio-diesel was changed. Decreasing combustion pressure and increasing the rate of heat were occurred when we had changed the EGR rate on the 20% of bio-diesel blended diesel fuel. The maximum pressure of combustion and the IMEP became higher as the EGR rate and the rate of blended bio-diesel were changed. Exhaust gas temperature was increased the higher rate of the blended bio-diesel under the fixed EGR rate. However, it went down as the EGR rate increased. The amounts of CO and Soot were reduced with increasing the rate of the blended bio-diesel without changing EGR rate and raised with increasing of the EGR rate. On the fixed EGR rate, NOx was increased along with growing the rate of the bio-diesel. On the other hand, it was decreased while EGR rate were going up.

Effects of the Combustion and Emission Characteristics in a CRDI Engine Biodiesel Blended Fuel with and EGR rate (커먼레일 디젤기관에서 바이오디젤 혼합 연료와 EGR율이 연소 및 배기특성에 미치는 영향)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3383-3388
    • /
    • 2014
  • An experimental study was performed to compare the characteristics of the combustion pressure and exhaust emissions in the case of using pure diesel when the EGR rate was changed in a CRDI 4-cylinder diesel engine with those using biodiesel blended and pure diesel fuel. In this study, the EGR rate variation were conducted at an engine speed of 2000rpm with fuel with a biodiesel blended rate of 20%. The combustion pressure of the biodiesel blended rate 20% and pure diesel fuels decreased with increasing EGR rate. The IMEP of biodiesel was higher than that of ULSD (Ultra low sulfur diesel). The emission results showed that the NOx emission of biodiesel blended fuel with increasing EGR rate was higher than that of ULSD. In addition, the NOx emission of biodiesel blended and diesel fuel decreased with increasing EGR rate. The CO and soot, $CO_2$ emissions increased with increasing EGR rate, and the CO and soot emissions from the biodiesel blended fuel were lower than that of ULSD but the $CO_2$ emissions were higher.

A Study on the Effects of EGR ratio on Engine Performance and Emission in a 4 Cylinder 4 Cycle Gasoline Engine (4실린더 4사이클 가솔린 기관에서 EGR율이 기관성능 및 유해배출물에 미치는 영향에 관한 연구)

  • 김태훈;조진호
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.3-15
    • /
    • 1993
  • A multi-cylinder four cycle spark ignition engine equipped with on exhaust gas recirculation(EGR) system to reduce nitric oxide emission and to improve fuel consumption rate has been comprehensively simulated In a computer program including intake and exhaust manifolds. To achieve these goals, this program was tested against experiments performed on a standard production four cylinder four cycle gasoline engine with EGR system. As EGR rate Increased, the maximum temperature of combustion chamber and NO omission concentration decreased under each driving condition. But the emission concentration of CO didn't change much through whole district in spite of the increase of EGR rate. Fuel consumption rate improved under each driving condition according to the increased of EGR rate until 10 percent EGR rate. Therefore the degree of EGR depend not only on the NO emission but also on the economy and the engine performance criteria of the engine.

  • PDF

Simulation of the Effect of EGR Configuration on EGR Rate in a Passenger Diesel Engine with Two-Stage Turbocharger (2단 터보과급기 장착 승용디젤엔진에서 EGR 배열 방식이 EGR율에 미치는 영향에 대한 시뮬레이션)

  • Chung, Jin-Eun;Roh, Ho-Jong;Chung, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4137-4144
    • /
    • 2010
  • In this study, the simulations were carried out to show the effect of the EGR configuration in a passenger diesel engine with 2-stage turbocharger on the EGR rate. The AMESim and IFP Engine Library were used to make the program for the simulation. Three EGR configurations, HPL(high pressure loop), LPL(low pressure loop), and SLPL(semi low pressure loop), were considered. The EGR rate in the HPL and LPL EGR routes were 6.4% and 10.0% respectively but the rate in SLPL route was 18.0% and their air/fuel ratio for all three cases was 21. Therefore the SLPL EGR configuration may be positively considered in the design of the passenger diesel engine with 2-stage turbocharger.

Effect of EGR Rate on Combustion and Emission Characteristics in a Single-cylinder Direct Injection Diesel Engine with Common-rail (직접분사식 커먼레일 단기통 디젤엔진에서 EGR율에 따른 연소 및 배기특성)

  • Heo, Jeong-Yun;Cha, June-Pyo;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • The purpose of this work is an experimental investigation of combustion and emission characteristics in DI diesel engine applied high EGR rate as a method of low-temperature combustion. In order to analyze the effect of EGR rate variation, a single-cylinder DI diesel engine was operated under various EGR rate conditions. In addition, injection timing was variously controlled to investigate the effect of injection timing in DI diesel engine using the cooled-EGR system. The NOx emissions were decreased in accordance with the increase of EGR rate. On the contrary, soot emissions were generally increased under applied EGR conditions. However, soot emissions were decreased in a few injection timings under high EGR rate conditions. The EGR results show that the ignition delay were increased by decreased oxygen concentrations in combustion chamber under the high EGR rate.

The Effects of Exhaust Gas Recirculation on Non-premixed Combustion (배기가스 재순환이 비예혼합 연소시스템에 미치는 영향)

  • Yu, Byeonghun;Kim, Jinsu;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.26-33
    • /
    • 2014
  • We examined the characteristics of $NO_x$ emission for CH4/air non-premixed flames using the exhaust gas recirculation(EGR) methods, which are the air-induced EGR(AI-EGR) and fuel-induced EGR(FI-EGR) methods. Our experimental results show that the $NO_x$ emission index($EI_{NOx}$) decreased with increasing EGR ratio. In the range needed to form a stable flame, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 29% when the EGR ratio was 20%, and the reduction rate for the AI-EGR method was approximately 28% with 25% of the EGR ratio. According to the flame structure based on numerical results, high temperature regions for the FI-EGR method were narrower and lower than those for the AI-EGR method at the same EGR ratio. Furthermore, based on the experimental results for swirl flames, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 49% with 15% of the EGR ratio, while the maximum reduction rate for AI-EGR method was approximately 45% with 25% of the EGR ratio. Consequently, we verified that the FI-EGR method was more effective than the AI-EGR method in reducing $NO_x$ emission for non-premixed flames with EGR. We expect that the results of this study will provide fundamental information relating to hybrid combustion systems, which can be used in the design of combustion systems in the future.

An Analysis on the Effects of EGR to Extend Operation Region for a HCCI Hydrogen Engine (HCCI 수소기관에서 운전영역확장을 위한 EGR 효과 분석)

  • LEE, KEONSIK;KIM, JINGU;BYUN, CHANGHEE;LEE, JONGTAI
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.560-566
    • /
    • 2015
  • HCCI (Homogeneous Charge Compression Ignition) hydrogen engine has relatively narrower operation range caused by knock occurrence due to the rapid pressure rising by using higher compression ratio. In this study, EGR as one of the countermeasure methods is considered to extend operation range of HCCI hydrogen engine. Also, the effects of hydrogen EGR are compared with the effects of EGR using hydrocarbon fuel. Hydrocarbon EGR is carried out by adding carbon dioxide to exhaust gas of HCCI hydrogen engine. As the results, EGR has positive effects on a HCCI hydrogen engine in reducing rate of pressure rise as same as the other engines used hydrocarbon fuels. However, the effects of hydrogen EGR are better than those of hydrocarbon EGR in decreasing minimum compression ratio and rate of pressure rise. When applying EGR to HCCI hydrogen engine by 20% rate, the rate of pressure rise decreases by 58% and it results in about 48% increase of the operation range in terms of supply energy.

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.

An experimental study on exhaust gas variation depending on EGR rate of common rail engine (커먼레일엔진 EGR RATE에 따른 배기가스 변화에 대한 실험적 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul;Seo, Joon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2167-2172
    • /
    • 2004
  • Current common rail engines are equipped with cooled EGR systems by using an engine cooling water system. In this study, investigations of exhaust gas reduction characteristics have been carried out in the common rail engine system depending on the EGR rate variation. The experimental results shows that NOx reduces and smoke increases as the EGR rate increases.

  • PDF

An Experimental Study on Effects of EGR Rate upon Exhaust Emissions in Small High-Speed Diesel Engines (소형 고속 디젤기관의 배기 배출물에 미치는 배기 재순환율의 영향에 관한 실험적 연구)

  • 임재근;배명환;김종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.60-77
    • /
    • 1992
  • The effects of exhaust gas recirculation(EGR) on the characteristics of exhaust emissions and specific fuel consumption have been investigated using an eight-cylinder, four cycle, direct injection diesel engine operating at several loads and speeds. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. In conclusion, it is found that $NO_{x}$ emission is markedly reduced with the drop of burnt gas temperature at high speeds and loads especially as the EGR rate increases, while the soot particulate rises with EGR rate and load at a given engine speed, especially high loads. The reduction of exhaust emissions within the Korea heavy duty diesel engine emission standards can be roughly achieved by the optimal EGR rate without degarding the specific fuel consumption, based on the correlations between exhaust emissions.

  • PDF