• 제목/요약/키워드: EGFP gene

검색결과 113건 처리시간 0.027초

Expression of Bombyx mori Nucleopolyhedrovirus ORF4 under the Control of BaculoviruS Ie1 Promoter by a Novel Bac-to-Bac/BmNPV Baculovirus Expression System

  • Su, Wujie;Wu, Yan;Wu, Huiling;Wang, Wenbing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제15권2호
    • /
    • pp.131-135
    • /
    • 2007
  • Open reading frame 4 of Bombyx mori nucleopolyhedrovirus (BmNPV), designated as Bm4, is a gene whose function is completely unknown. With the recently developed BmNPV bacmid and a modified pFastBac1 whose polyhedrin promoter was replaced with ie1 promoter, a recombinant bacmid expressing Bm4-EGFP fusion protein under the control of ie1 promoter in BmN cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced efficiently with other promoters to direct the expression of foreign gene in BmN cells by using Bac-to-Bac/BmNPV baculovirus expression system but also laid the foundation for rescue experiment of Bm4 deletion mutant due to the ability of ie1 promoter to direct gene expression throughout the infection cycle.

Green Fluorescent Protein(GFP)의 Fluorescence-Activated Cell Sorter(FACS) 분석을 통한 유전자 이입의 최적화 (Optimization of Gene Transfection Using Fluorescence-Activated Cell Sorter(FACS) Analysis of Green Fluorescent Protein(GFP))

  • 김태경;박민태;이균민
    • KSBB Journal
    • /
    • 제14권3호
    • /
    • pp.377-379
    • /
    • 1999
  • CHO/dhfr- 세포에 대해 LipofectAmine$^{TM}$을 이용한 유전자 이입 효율을 증가시키기 위하여 지질과 DNA의 최적 농도를 구하였다. Reporter 유전자로서 GFP 유전자를 이용하였으며, 여러 농도의 지질 DNA로 유전자 이입된 각 세포군에서 나타나는 green fluorescence intensity를 FACS 분석함으로써 유전자 이입 효율을 정량화 할 수 있었다. 그 결과 24-well plate에서 $2.0{\mu}L$LipofectAmine$^{TM}$$0.4{\mu}g$ DNA를 조합하여 사용했을 때 최적의 유전자 이입 효율이 나타남을 알 수 있었다. 또한, GFP는 유전자 이입 최적화를 수행하는 데에 여러가지 면에서 유용한 수단이 될 수 있음을 확인할 수 있었다.

  • PDF

Characterization of porcine cytokine inducible SH2-containing protein gene and its association with piglet diarrhea traits

  • Niu, Buyue;Guo, Dongchun;Liu, Zhiran;Han, Xiaofei;Wang, Xibiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권12호
    • /
    • pp.1689-1695
    • /
    • 2017
  • Objective: The cytokine inducible SH2-containing protein (CISH), which might play a role in porcine intestine immune responses, was one of the promising candidate genes for piglet anti-disease traits. An experiment was conducted to characterize the porcine CISH (pCISH) gene and to evaluate its genetic effects on pig anti-disease breeding. Methods: Both reverse transcription polymerase chain reaction (RT-PCR) and PCR were performed to obtain the sequence of pCISH gene. A pEGFP-C1-CISH vector was constructed and transfected into PK-15 cells to analysis the distribution of pCISH. The sequences of individuals were compared with each other to find the polymorphisms in pCISH gene. The association analysis was performed in Min pigs and Landrace pigs to evaluate the genetic effects on piglet diarrhea traits. Results: In the present research, the coding sequence and genomic sequence of pCISH gene was obtained. Porcine CISH was mainly localized in cytoplasm. TaqI and HaeIII PCR restriction fragment length polymorphism (RFLP) assays were established to detect single nucleotide polymorphisms (SNPs); A-1575G in promoter region and A2497C in Intron1, respectively. Association studies indicated that SNP A-1575G was significantly associated with diarrhea index of Min piglets (p<0.05) and SNP A2497C was significantly associated with the diarrhea trait of both Min pig and Landrace piglets (p<0.05). Conclusion: This study suggested that the pCISH gene might be a novel candidate gene for pig anti-disease traits, and further studies are needed to confirm the results of this preliminary research.

The Magas1 Gene is Involved in Pathogenesis by Affecting Penetration in Metarhizium acridum

  • Cao, Yueqing;Zhu, Xiangxian;Jiao, Run;Xia, Yuxian
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.889-893
    • /
    • 2012
  • Appressorium is a specialized infection structure of filamentous pathogenic fungi and plays an important role in establishing a pathogenic relationship with the host. The Egh16/Egh16H family members are involved in appressorium formation and pathogenesis in pathogenic filamentous fungi. In this study, a homolog of Egh16H, Magas1, was identified from an entomopathogenic fungus, Metarhizium acridum. The Magas1 protein shared a number of conserved motifs with other Egh16/Egh16H family members and specifically expressed during the appressorium development period. Magas1-EGFP fusion expression showed that Magas1 protein was not localized inside the cell. Deletion of the Magas1 gene had no impact on vegetative growth, conidiation and appressorium formation, but resulted in a decreased mortality of host insect when topically inoculated. However, the mortality was not significant between the Magas1 deletion mutant and wild-type treatment when the cuticle was bypassed by injecting conidia directly into the hemocoel. Our results suggested that Magas1 may influence virulence by affecting the penetration of the insects' cuticle.

Gene Transfer in Normal and Ischemic Tibialis Anterior Muscle of Rat by In Vivo Electroporation

  • ;;;;;곽병국
    • 대한의생명과학회지
    • /
    • 제13권3호
    • /
    • pp.207-212
    • /
    • 2007
  • The purpose of this preliminary study is to improve the efficiency of gene transfer of nonviral plasmid DNA by in vivo electroporation in ischemic hindlimb muscle, tibialis anterior. Hindlimb ischemic model was aseptically made by excision of left femoral artery. Each $50\;{\mu}g$ of pEGFP-C1 and pGL3-control in $100\;{\mu}l$ 0.9% NaCl was injected in tibialis anterior muscle. In vivo electroporation was applied on the same site with 10 mm-distance 2 needle array electrodes and ECM830. In 3 groups of normal rat with different electric field strength 0, 200 and 800 V/cm, the expression of pEGFP-C1 was comparatively evaluated. In 8 groups of normal rats, the expression of pGL3-control was evaluated in 0, 40, 50, 80, 100, 150, 200 and 300 V/cm of electric field strength. In 5 groups of ischemic models, the expression of pGL3-control was analyzed on 0, 4, 7, 10 and 14 days elapsed after making ischemic models. In 9 groups of ischemic rats, the expression of pGL3-control was analyzed in the electric field strength 0, 60, 70, 80, 100, 150, 200, 250 and 300 V/cm. GFP expressions in normal tibialis anterior were high in the extent and degree in order of electric field strength of 200, 800 and 0 V/cm. Luciferase value was highest in $50{\sim}100\;V/cm$ electric field strength. In the case of ischemic models, luciferase expression was significantly increasing in the order elapsed time after making the model. The degree of luciferase expression was higher in cases of application of in vivo electroporation than in that of non-application and was highest in $100{\sim}150\;V/cm$. In conclusion, in vivo electroporation is effective in transfer and expression of plasmid DNA in normal and ischemic tibialis anterior of rat.

  • PDF

hPDX1 유전자의 삽입에 의한 직접 췌도세포 분화 (Transdifferentiation of α-1,3-Galactosyltransferase Knock Out (GalT KO) Pig Derived Bone Marrow Mesenchymal Stromal Cells (BM-MSCs) into Pancreatic Cells by Transfection of hPDX1)

  • 옥선아;오건봉;황성수;김영임;권대진;임기순
    • 한국수정란이식학회지
    • /
    • 제30권3호
    • /
    • pp.249-255
    • /
    • 2015
  • Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of ${\beta}-cells$, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from ${\alpha}$-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3~4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in ${\beta}-cell$ replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.

Establishment of a Dual-Vector System for Gene Delivery Utilizing Prototype Foamy Virus

  • Soo-Yeon Cho;Yoon Jae Lee;Seong-Mook Jung;Young Min Son;Cha-Gyun Shin;Eui Tae Kim;Kyoung-Dong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.804-811
    • /
    • 2024
  • Foamy viruses (FVs) are generally recognized as non-pathogenic, often causing asymptomatic or mild symptoms in infections. Leveraging these unique characteristics, FV vectors hold significant promise for applications in gene therapy. This study introduces a novel platform technology using a pseudo-virus with single-round infectivity. In contrast to previous vector approaches, we developed a technique employing only two vectors, pcHFV lacking Env and pCMV-Env, to introduce the desired genes into target cells. Our investigation demonstrated the efficacy of the prototype foamy virus (PFV) dual-vector system in producing viruses and delivering transgenes into host cells. To optimize viral production, we incorporated the codon-optimized Env (optEnv) gene in pCMV-Env and the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE) at the 3' end of the transgene in the transfer vector. Consequently, the use of optEnv led to a significant enhancement in transgene expression in host cells. Additionally, the WPRE exhibited an enhancing effect. Furthermore, the introduced EGFP transgene was present in host cells for a month. In an effort to expand transgene capacity, we further streamlined the viral vector, anticipating the delivery of approximately 4.3 kbp of genes through our PFV dual-vector system. This study underscores the potential of PFVs as an alternative to lentiviruses or other retroviruses in the realm of gene therapy.

DNA methyltransferase 3a is Correlated with Transgene Expression in Transgenic Quails

  • Jang, Hyun-Jun;Kim, Young-Min;Rengaraj, Deivendran;Shin, Young-Soo;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • 제53권3호
    • /
    • pp.269-274
    • /
    • 2011
  • DNA methyltransferases (DNMTs) are closely associated with the epigenetic change and the gene silencing through the regulation of methylation status in animal genome. But, the role of DNMTs in transgene silencing has remained unclear. So, we examined whether the knockdown of DNMT influences the reactivation of transgene expression in the transgenic quails. In this study, we investigated the expression of DNMT3a, and DNMT3b in blastoderm, quail embryonic fibroblasts (QEFs) and limited embryonic tissues such as gonad, kidney, heart and liver of E6 transgenic quails (TQ2) by RT-PCR. We further analyzed the expression of DNMT3a at different stages of whole embryos during early embryonic development by qRT-PCR. DNMT3a expression was detected in all test samples; however, it showed the highest expression in E6 whole embryo. Embryonic fibroblasts collected from TQ2 quails were treated with two DNMT3a-targeted siRNAs (siDNMT3a-51 and siDNMT3a-88) for RNA interference assay, and changes in expression were then analyzed by qRT-PCR. The siDNMT3a-51 and siDNMT3a-88 reduced 53.34% and 64.64% of DNMT3a expression in TQ2 QEFs, respectively. Subsequently the treatment of each siRNA reactivated enhanced green fluorescent protein (EGFP) expression in TQ2 (224% and 114%). Our results might provide a clue for understanding the DNA methylation mechanism responsible for transgenic animal production and stable transgene expression.

Ellagic Acid Exerts Anti-proliferation Effects via Modulation of Tgf-Β/Smad3 Signaling in MCF-7 Breast Cancer Cells

  • Zhang, Tao;Chen, Hong-Sheng;Wang, Li-Feng;Bai, Ming-Han;Wang, Yi-Chong;Jiang, Xiao-Feng;Liu, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.273-276
    • /
    • 2014
  • Ellagic acid has been shown to inhibit tumor cell growth. However, the underlying molecular mechanisms remain elusive. In this study, our aim was to investigate whether ellagic acid inhibits the proliferation of MCF-7 human breast cancer cells via regulation of the TGF-${\beta}$/Smad3 signaling pathway. MCF-7 breast cancer cells were transfected with pEGFP-C3 or pEGFP-C3/Smad3 plasmids, and treated with ellagic acid alone or in combination with SIS3, a specific inhibitor of Smad3 phosphorylation. Cell proliferation was assessed by MTT assay and the cell cycle was detected by flow cytometry. Moreover, gene expression was detected by RT-PCR, real-time PCR and Western blot analysis. The MTT assay showed that SIS3 attenuated the inhibitory activity of ellagic acid on the proliferation of MCF-7 cells. Flow cytometry revealed that ellagic acid induced G0/G1 cell cycle arrest which was mitigated by SIS3. Moreover, SIS3 reversed the effects of ellagic acid on the expression of downstream targets of the TGF-${\beta}$/Smad3 pathway. In conclusion, ellagic acid leads to decreased phosphorylation of RB proteins mainly through modulation of the TGF-${\beta}$/Smad3 pathway, and thereby inhibits the proliferation of MCF-7 breast cancer cells.

Assessements of Apoptosis in Bovine Embryos Reconstructed with Fetal Fibroblast

  • Lee, S. L.;Park, G.;S. Y. Choe
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.136-136
    • /
    • 2003
  • Mainly due to deficiencies in nuclear reprogramming, gene expression and DNA fragmentation, which result in early and late embryonic losses, the overall success rate achieved by cloning techniques to date is low. This present study compared the incidences of DNA fragmentation during development of IVF, parthenotes (PT), nuclear transfer (NT) and transgenic (TG) embryos. Terminal deoxynucleotidyl transferase (TdT) nick-end labelling (TUNEL) with propidium iodide counter staining was used for determination of DNA fragmentation and total number, respectively. TG and NT donor cells were fetal fibroblasts with or without transfection with EGFP, and cultured in DMEM+15% FCS until confluent, for 5 days. At 19 h post-maturation (hpm), enucleated oocytes were reconstructed with donor cells and activated at 24 hpm with the combinations of ionomycin (5 M, 5 min) and cyclo-heximide (10 g/ml, 5 h) after electric fusion by a single DC pulse (1.6 KV/cm, 60 sec). Parthenotes were produced by the same activation protocol at 24 hpm. (중략)

  • PDF