• Title/Summary/Keyword: EEUC

Search Result 5, Processing Time 0.018 seconds

ESBL: An Energy-Efficient Scheme by Balancing Load in Group Based WSNs

  • Mehmood, Amjad;Nouman, Muhammad;Umar, Muhammad Muneer;Song, Houbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4883-4901
    • /
    • 2016
  • Energy efficiency in Wireless Sensor Networks (WSNs) is very appealing research area due to serious constrains on resources like storage, processing, and communication power of the sensor nodes. Due to limited capabilities of sensing nodes, such networks are composed of a large number of nodes. The higher number of nodes increases the overall performance in data collection from environment and transmission of packets among nodes. In such networks the nodes sense data and ultimately forward the information to a Base Station (BS). The main issues in WSNs revolve around energy consumption and delay in relaying of data. A lot of research work has been published in this area of achieving energy efficiency in the network. Various techniques have been proposed to divide such networks; like grid division of network, group based division, clustering, making logical layers of network, variable size clusters or groups and so on. In this paper a new technique of group based WSNs is proposed by using some features from recent published protocols i.e. "Energy-Efficient Multi-level and Distance Aware Clustering (EEMDC)" and "Energy-Efficient Multi-level and Distance Aware Clustering (EEUC)". The proposed work is not only energy-efficient but also minimizes the delay in relaying of data from the sensor nodes to BS. Simulation results show, that it outperforms LEACH protocol by 38%, EEMDC by 10% and EEUC by 13%.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

DDCP: The Dynamic Differential Clustering Protocol Considering Mobile Sinks for WSNs

  • Hyungbae Park;Joongjin Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1728-1742
    • /
    • 2023
  • In this paper, we extended a hierarchical clustering technique, which is the most researched in the sensor network field, and studied a dynamic differential clustering technique to minimize energy consumption and ensure equal lifespan of all sensor nodes while considering the mobility of sinks. In a sensor network environment with mobile sinks, clusters close to the sinks tend to consume more forwarding energy. Therefore, clustering that considers forwarding energy consumption is desired. Since all clusters form a hierarchical tree, the number of levels of the tree must be considered based on the size of the cluster so that the cluster size is not growing abnormally, and the energy consumption is not concentrated within specific clusters. To verify that the proposed DDC protocol satisfies these requirements, a simulation using Matlab was performed. The FND (First Node Dead), LND (Last Node Dead), and residual energy characteristics of the proposed DDC protocol were compared with the popular clustering protocols such as LEACH and EEUC. As a result, it was shown that FND appears the latest and the point at which the dead node count increases is delayed in the DDC protocol. The proposed DDC protocol presents 66.3% improvement in FND and 13.8% improvement in LND compared to LEACH protocol. Furthermore, FND improved 79.9%, but LND declined 33.2% when compared to the EEUC. This verifies that the proposed DDC protocol can last for longer time with more number of surviving nodes.

An Adaptive Clustering Protocol Based on Position of Base-Station for Sensor Networks (센서 네트워크를 위한 싱크 위치 기반의 적응적 클러스터링 프로토콜)

  • Kook, Joong-Jin;Park, Young-Choong;Park, Byoung-Ha;Hong, Ji-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.247-255
    • /
    • 2011
  • Most existing clustering protocols have been aimed to provide balancing the residual energy of each node and maximizing life-time of wireless sensor networks. In this paper, we present the adaptive clustering strategy related to sink position for clustering protocols in wireless sensor networks. This protocol allows networks topology to be adaptive to the change of the sink position by using symmetrical clustering strategy that restricts the growth of clusters based on depth of the tree. In addition, it also guarantees each cluster the equal life-time, which may be extended compared with the existing clustering protocols. We evaluated the performance of our clustering scheme comparing to LEACH and EEUC, and observe that our protocol is observed to outperform existing protocols in terms of energy consumption and longevity of the network.

An Energy Efficient Unequal Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적인 불균형 클러스터링 알고리즘)

  • Lee, Sung-Ju;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.783-790
    • /
    • 2009
  • The necessity of wireless sensor networks is increasing in the recent years. So many researches are studied in wireless sensor networks. The clustering algorithm provides an effective way to prolong the lifetime of the wireless sensor networks. The one-hop routing of LEACH algorithm is an inefficient way in the energy consumption of cluster-head, because it transmits a data to the BS(Base Station) with one-hop. On the other hand, other clustering algorithms transmit data to the BS with multi-hop, because the multi-hop transmission is an effective way. But the multi-hop routing of other clustering algorithms which transmits data to BS with multi-hop have a data bottleneck state problem. The unequal clustering algorithm solved a data bottleneck state problem by increasing the routing path. Most of the unequal clustering algorithms partition the nodes into clusters of unequal size, and clusters closer to the BS have small-size the those farther away from the BS. However, the energy consumption of cluster-head in unequal clustering algorithm is more increased than other clustering algorithms. In the thesis, I propose an energy efficient unequal clustering algorithm which decreases the energy consumption of cluster-head and solves the data bottleneck state problem. The basic idea is divided a three part. First of all I provide that the election of appropriate cluster-head. Next, I offer that the decision of cluster-size which consider the distance from the BS, the energy state of node and the number of neighborhood node. Finally, I provide that the election of assistant node which the transmit function substituted for cluster-head. As a result, the energy consumption of cluster-head is minimized, and the energy consumption of total network is minimized.