• Title/Summary/Keyword: EERA

Search Result 5, Processing Time 0.018 seconds

EERA: ENHANCED EFFICIENT ROUTING ALGORITHM FOR MOBILE SENSOR NETWORK

  • Hemalatha, S;Raj, E.George Dharma Prakash
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.389-395
    • /
    • 2022
  • A Mobile Sensor Network is widely used in real time applications. A critical need in Mobile Sensor Network is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes"EERA: Energy Efficient Routing Algorithm for Mobile Sensor Network" is divided into five phases. 1, Cluster Formation 2.Cluster head and Transmission head selection 3.Path Establishment / Route discovery and 4,Data Transmission. Experimental Analysis has been done and is found that the proposed method performs better than the existing method with respect to four parameters.

Dynamic simulation models for seismic behavior of soil systems - Part II: Solution algorithm and numerical applications

  • Sahin, Abdurrahman
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.169-193
    • /
    • 2015
  • This paper is the second part of the study for determining the seismic behavior of soil systems. The aim of this part is to present solution approaches for determining seismic site amplification. For this purpose, two solution techniques are used. The first technique is equivalent linear analysis which is mostly used in literature. The other technique is real time parameter updating approach and this approach uses the possibilities of Simulink effectively. A graphical user interfaced (GUI) program called DTASSA standing for Discrete-Time Analysis of Seismic Site Amplification is developed. In DTASSA, automatic block diagram producing system is developed and seismic site amplification for multiple soil layers may easily be investigated in real time. Numerical applications have been carried out to check the reliability of developed algorithm. The results of DTASSA are compared with SUA, EERA and NERA programs for the particular example problems.

Energy-Efficient Resource Allocation for Heterogeneous Cognitive Radio Network based on Two-Tier Crossover Genetic Algorithm

  • Jiao, Yan;Joe, Inwhee
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.112-122
    • /
    • 2016
  • Cognitive radio (CR) is considered an attractive technology to deal with the spectrum scarcity problem. Multi-radio access technology (multi-RAT) can improve network capacity because data are transmitted by multiple RANs (radio access networks) concurrently. Thus, multi-RAT embedded in a cognitive radio network (CRN) is a promising paradigm for developing spectrum efficiency and network capacity in future wireless networks. In this study, we consider a new CRN model in which the primary user networks consist of heterogeneous primary users (PUs). Specifically, we focus on the energy-efficient resource allocation (EERA) problem for CR users with a special location coverage overlapping region in which heterogeneous PUs operate simultaneously via multi-RAT. We propose a two-tier crossover genetic algorithm-based search scheme to obtain an optimal solution in terms of the power and bandwidth. In addition, we introduce a radio environment map to manage the resource allocation and network synchronization. The simulation results show the proposed algorithm is stable and has faster convergence. Our proposal can significantly increase the energy efficiency.

Site effects and associated structural damage analysis in Kathmandu Valley, Nepal

  • Gautam, Dipendra;Forte, Giovanni;Rodrigues, Hugo
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1013-1032
    • /
    • 2016
  • Several historical earthquakes demonstrated that local amplification and soil nonlinearity are responsible for the uneven damage pattern of the structures and lifelines. On April $25^{th}$ 2015 the Mw7.8 Gorkha earthquake stroke Nepal and neighboring countries, and caused extensive damages throughout Kathmandu valley. In this paper, comparative studies between equivalent-linear and nonlinear seismic site response analyses in five affected strategic locations are performed in order to relate the soil behavior with the observed structural damage. The acceleration response spectra and soil amplification are compared in both approaches and found that the nonlinear analysis better represented the observed damage scenario. Higher values of peak ground acceleration (PGA) and higher spectral acceleration have characterized the intense damage in three study sites and the lower values have also shown agreement with less to insignificant damages in the other two sites. In equivalent linear analysis PGA varies between 0.29 to 0.47 g, meanwhile in case of nonlinear analysis it ranges from 0.17 to 0.46 g. It is verified from both analyses that the PGA map provided by the USGS for the southern part of Kathmandu valley is not properly representative, in contrary of the northern part. Similarly, the peak spectral amplification in case of equivalent linear analysis is estimated to be varying between 2.3 to 3.8, however in case of nonlinear analysis, the variation is observed in between 8.9 to 18.2. Both the equivalent linear and nonlinear analysis have depicted the soil fundamental period as 0.4 and 0.5 sec for the studied locations and subsequent analysis for seismic demands are correlated.

Extracts of Allium fistulosum Attenuates Pro-Inflammatory Action in the Lipopolysaccharide-Stimulated BV2 Microglia Cells (Lipopolysaccharide에 의한 BV2 세포의 염증 반응에 대한 파 추출물의 저해 활성)

  • Park, Shin-Hyoung;Kim, Jung-In;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.796-804
    • /
    • 2011
  • Microglia are central nervous system (CNS)-resident professional macrophages that function as the principal immune cells responding to pathological stimulations in the CNS. Activation of microglia, induced by various pathogens, protects neurons and maintains homeostasis in the CNS, but severe activation causes inflammatory responses secreting various neurotoxic molecules such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines. Allium fistulosum, a member of the onion family, is mainly cultivated for consumption, as well as medicinal use in Oriental medicine. It has been reported that A. fistulosum has various biological effects such as anti-oxidant, anti-platelet aggregation, anti-fungus and anti-cholesterol synthesis, however there has been no research about the anti-inflammatory effects of A. fistulosum extracts. In this study, it was undertaken to explore the functions of A. fistulosum as a suppressor of neuronal inflammation by using BV2 microglia cells. As a result, it was found that four kinds of extracts of A. fistulosum effectively reduced the expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at both mRNA and protein levels, and also attenuated pro-inflammatory cytokines such as tumor necrosis alpha (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) and interleukin-6 (IL-6) at the mRNA level in BV2 stimulated by lipopolysaccharide (LPS). In addition, the extracts of A. fistulosum attenuated the release of NO markedly, as well as resulting in slight decreases of TNF-${\alpha}$ and IL-6 production, the effects of which were most significant when treated with ethyl alcohol extract from the whole A. fistulosum. In conclusion, the data indicated that the anti-inflammatory actions of A. fistulosum against BV2 microglia cells is through the down-regulation of iNOS, COX2 and pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-6, and these effects are expected to help in the protection of nerve tissues by suppressions of neuronal inflammation in various neurodegenerative diseases.