• Title/Summary/Keyword: EEG variation

Search Result 84, Processing Time 0.028 seconds

A Study on the Correlation Analysis of EEG and Vibraimage due to Auditory and Olfactory Stimulation (청각 및 후각자극에 의한 뇌파(EEG)와 진동이미지기술의 상관성 분석에 관한 연구)

  • Kim, Jung-Min;Kim, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4291-4297
    • /
    • 2015
  • EEG has been used to measure the emotion of amenity and discomfort in the interior space. EEG is limited to the experiment, because it is a equipment of contact type. However, Vibraimage can measure the emotion with a web camera. Because Vibraimage is a equipment of non-contact type, it is more suitable for the interior space than EEG. Therefor, it tries to find a correlation variable between EEG and Vibraimage to measure the human emotions. In this study, it were analyzed correlation of EEG and vibraimage due to variation of loudness 60[dB], 90[dB] and rosemary, jasmine scents. Check the health status of subjects who were selected 3 male students, and the period of this experiment was about months. The condition of the environmental test room was in temperature 25[$^{\circ}C$], relative humidity 50[RH%], air current speed 0.02[m/s] and illuminance 1000[lux]. It were analyzed correlation of twenty-three index of EEG(absolute ${\theta}$, relative ${\theta}$, absolute $S{\alpha}$, relative $S{\alpha}$, absolute ${\alpha}$, relative ${\alpha}$, absolute ${\beta}$, relative ${\beta}$, absolute $\gamma$, relative $\gamma$, absolute $F{\alpha}$, relative $F{\alpha}$, absolute SMR, relative SMR, $SMR/{\theta}$, $SMR+M{\beta}/{\theta}$, absolute $H{\beta}$, relative $H{\beta}$, $H{\beta}/{\alpha}$, absolute $M{\beta}$, relative $M{\beta}$, SEF50, ASEF50) and ten index of Vibraimage(Aggression, Stress, Tension/Anxiety, Suspect, Balance, Charm, Energy, Self regulation, Inhibition, Neuroticism). As a result, I was found that relative ${\gamma}$ index of EEG and neuroticism index of Vibraimage have a high correlation as (${\pm}$).414 and (${\pm}$).424.

Development of an Optimal EEG and Artifact Classifier Using Neural Network Operating Characteristics (신경망 운영특성곡선을 이용한 최적의 뇌파 및 Artifact 분류기 구성)

  • Lee, T.Y.;Ahn, C.B.;Lee, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.160-163
    • /
    • 1995
  • An optimal EEG and artifact classifier is proposed using neural network operating characteristics. The neural network operating characteristics are two dimensional parametric representations of the right and false identification probabilities of the network classifier. Since the EEG and EP signals acquired from multi -channel electrodes placed on the head surface are often interfered by other relatively large physiological signals such as electromyogram (EMG) or electroculogram (EOG), the removal of the artifact-affected EEGs is one of the key elements in neuro-functional mapping. Conventionally this task has been carried out by human experts spending lots of examination time. Using the neural-network based classification, human expert's efforts and time can be substantially reduced. From experiments, the neural-network based classification performs as good as human experts: variation of decisions between the neural network and human expert appears even smaller than that between human experts.

  • PDF

A research on EEG coherence variation by relaxation (이완에 따른 EEG 코히런스 변화에 대한 연구)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Woo, Jin-Cheol;Kim, Chi-Joong;Kim, Young-Woo;Kim, Ji-Hye;Kim, Dong-Keun
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • This study is to analyze change of connectivity between brain positions caused by relaxation through EEG coherence. EEG spectrum analysis method has been used to analyze brain activity when relaxation was experienced. However, the spectrum analysis method has a limit that could not observe interactive reaction between brain-functional positions. Therefore, coherence between positions was analyzed to observe connectivity between the measurement positions in this study. Through the method, the reaction of the central nervous system caused by the emotion change was observed. Twenty-four undergraduates of both genders(12 males and 12 females) were asked to close their eyes and listen to the sound. During experiment, EEG was measured at eight positions. The eight positions were F3, F4, T3, T4, P3, P4, O1, and O2 in accordance with International 10-20 system. The sounds with white noise and without were used for relaxation experience. Subjective emotion was measured to verify whether or not they felt relaxation. Subjective emotion of participants were analyzed by ANOVA method(Analysis of Variance). In the result, it was proved that relaxation was subjectively evoked when participants heard sound. Accordingly, it was proved that relaxation could be enhanced by the mixed white noise. EEG coherence between the measurement positions was analyzed. T-test was performed to find its significant difference between relaxation and not-relaxation. In the results of EEG coherence, connectivity with occipital lobes has been increased with relaxation, and connectivity with parietal lobes has been increased with non-relaxed state. Therefore, brain connectivity has shown different pattern between relaxed emotion and non-relaxed emotion.

  • PDF

Study for Variational Characteristics of Brain According to Human Emotion -Human Emotion by Auditory Perception- (감성에 따른 뇌의 변화 특성에 대한 연구 -청각감각에 의한 감성-)

  • Whang, Min-Cheol;Sohn, Jin-Hun;Kim, Chul-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.3
    • /
    • pp.609-619
    • /
    • 1997
  • The concept of human emotion is recently demanded to be imbedded in industrial product and environment for enhancing quality of life. Human emotion is attempted to be qualified and quantified by physiological measurements. EEG variation, one of the physiological measurement, is observed to characterize psychological response in this study. This study is to find function and process of brain according to emotion. Twenty university students participated in this study and experienced positive and negative emotion by auditory stimulus. Delta, theta, alpha and beta waves showed characteristic variation in normalized sense according to positive and negative emotion. Local area showing significant difference between positive and negative emotion decreases with stimulus duration. Delta, theta and beta waves increase with negative emotion while alpha wave does with positive emotion.

  • PDF

Subject Test Using Electroencephalogram According to Variation of Autostereoscopic Image Quality (무안경 입체영상의 화질변화에 따른 뇌파 기반 사용자 반응 분석)

  • Moon, Jae-Chul;Hong, Jong-Ui;Choi, Yoo-Joo;Suh, Jung-Keun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.195-202
    • /
    • 2016
  • There have been many studies on subject tests for 3D contents using 3D glasses, but there is a limited research for 3D contents using autostereoscopic display. In this study, we investigated to assess usability of electroencephalogram (EEG) as an objective evaluation for 3D contents with different quality using autosteroscopic display, especially for lenticular lens type. The image with optimal quality and the image with distorted quality were separately generated for autostereosopic display with lenticular lens type and displayed sequentially through lenticular lens for 26 subjects. EEG signals of 8 channels from 26 subjects exposed to those images were detected and correlation between EEG signal and the quality of 3D images were statistically evaluated to check differences between optimal and distorted 3D contents. What we found was that there was no statistical significance for a wave vibration, however b wave vibration shows statistically significant between optimal and distorted 3D contents. b wave vibration observed for the distorted 3D image was stronger than that for the optimal 3D image. This results suggest that subjects viewing the distorted 3D contents through lenticular lens experience more discomfort or fatigue than those for the optimum 3D contents, which resulting in the greater b wave activity for those watching the distorted 3D contents. In conclusion, these results confirm that electroencephalogram (EEG) analysis can be used as a tool for objective evaluation of 3D contents using autosteroscopic display with lenticular lens type.

Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms (좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용)

  • Kang, Byung-Jun;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.654-660
    • /
    • 2020
  • Through the output of brain waves during muscle operation, this paper checks whether it is possible to find characteristic vectors of brain waves that are capable of dividing left and right movements by extracting brain waves in specific areas of muscle signal output that include the motion of the left and right muscles or the will of the user within EEG signals, where uncertainties exist considerably. A typical surface EMG and noninvasive brain wave extraction method does not exist to distinguish whether the signal is a motion through the degree of ionization by internal neurotransmitter and the magnitude of electrical conductivity. In the case of joint and motor control through normal robot control systems or electrical signals, signals that can be controlled by the transmission and feedback control of specific signals can be identified. However, the human body lacks evidence to find the exact protocols between the brain and the muscles. Therefore, in this paper, efficiency is verified by utilizing the results of application of CSP (Common Spatial Pattern) filter to verify that the left-hand and right-hand signals can be extracted through brainwave analysis when the subject's behavior is performed. In addition, we propose ways to obtain data through experimental design for verification, to verify the change in results with or without filter application, and to increase the accuracy of the classification.

A Study on the Indoor Temperature effects on Neuro-energy (실내 온도가 뉴로에너지에 미치는 영향에 관한 연구)

  • Kim, Jung-Min;Kim, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2436-2442
    • /
    • 2014
  • In this study, EEG, HRV, and Vibra image were compared and analyzed in the environmental test room due to variation of temperature. The condition of the environmental test room was in relative humidity 50[RH%], air current speed 0.02[m/s] and illuminance 1000[lux] with setting up different temperatures from $18[^{\circ}C]$ to $31[^{\circ}C]$. At temperature $25[^{\circ}C]$, relative $M{\alpha}$ wave, relative $M{\beta}$ wave, $\frac{SMR}{\theta}$, and SDNN were revitalized, and both sides ${\alpha}$ wave asymmetry index $A_2$, HRT, stress index, and fatigue degree were decreased. Therefore, it was found that temperature $25[^{\circ}C]$ effects to increase the Neuro-energy like amenity, productivity, and concentration.

Investigation of Visual Perception Under Zen-Meditation Based On Alpha-Dependent F-VEPs

  • Liao, Hsien-Cheng;Liu, Chuan-Yi;Lo, Pei-Chen
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.384-391
    • /
    • 2006
  • Variation of brain dynamics under Zen meditation has been one of our major research interests for years. One issue encountered is the inaccessibility to the actual meditation level or stage as a reference. In this paper, we propose an alternative strategy for investigating the human brain in response to external flash stimuli during Zen meditation course. To secure a consistent condition of the brain dynamics when applying stimulation, we designed a recording of flash visual evoked potentials (F-VEPs) based on a constant background EEG (electroencephalograph) frontal $\alpha-rhythm$ dominating activities that increase significantly during Zen meditation. Thus the flash-light stimulus was to be applied upon emergence of the frontal $\alpha-rhythm$. The alpha-dependent F-VEPs were then employed to inspect the effect of Zen meditation on brain dynamics. Based on the experimental protocol proposed, considerable differences between experimental and control groups were obtained. Our results showed that amplitudes of P1-N2 and N2-P2 on Cz and Fz increased significantly during meditation, contrary to the F-VEPs of control group at rest. We thus suggest that Zen meditation results in acute response on primary visual cortex and the associated parts.

The Effect of Balance Control Therapy on Brain Activation (균형조절치료가 뇌활성도에 미치는 영향)

  • Oh, Yeong-Taek;Han, Dong-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.2
    • /
    • pp.163-173
    • /
    • 2013
  • PURPOSE: This study determined the effect of balance control therapy in the brain activation. METHODS: Twenty-two college students who showed decrease of muscle strength in O-ring test were as participants in this study. And the subjects were randomly divided into experimental group (n=13) and control group (n=9). Measurement device is portable EEG (Nihonkhoden, Japan). Examinations used twenty electrodes attached to the head to capture electrical brain signals during 5 minutes with brain activated states such as the awaked state and the data were compared between the two groups. RESULTS: After treatment by balance control therapy, P3 (p<.025) and P4 areas (p<.025) showed a significantly lower ST index in the experimental group than the control group, The variation of ST index in P4 area (p<.025) was decreased in the experimental group but was increased in the control group. CONCLUSION: These results showed that the balance control therapy was helpful to change the brain activation such as the stress (ST) index at the sensory area in the college students.

Study on the Variation of Driver's Biosignals According to the Color Temperature of Vehicle Interior Mood Lighting (자동차 실내 무드조명의 색온도에 따른 운전자의 생체신호 변화)

  • Kim, Kyu-Beom;Jo, Hyung-Seok;Kim, Young-Jung;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.3-12
    • /
    • 2020
  • The purpose of this work is to suggest the optimal color temperature, which induces a sense of comfort for autonomous vehicle users through the analysis of biosignal using electroencephalography (EEG) and photoplethysmography (PPG). To achieve this purpose, we applied lighting with a color temperature of 3000 K, 4000 K, 5000 K, and 6000 K to the autonomous driving environment. We experimented in a laboratory equipped with a graphic driving simulator. The experimental procedure is as follows: 1) stabilization (5 min). 2) Uchida-Kraepelin test (3 min). 3) Automatic driving + lighting (3 min). This procedure was repeated four times under different color temperatures. We performed frequency analysis on a collected time-series data and calculated the power value for each frequency band through power spectrum analysis. In the case of EEG, we analyzed α- and β-waves, which are indicators of stability and arousal, respectively. In the case of PPG, we analyzed the sympathetic nervous system activity. To reduce deviations between the subjects, we normalized the data before analysis. The result of the first analysis revealed that α-wave increased only at 5000 K, while the β-wave increased at almost all color temperatures. In addition, in the case of PPG, sympathetic nervous system activity (SNSA) increased under driving conditions. The result of the second analysis revealed that the difference between β-wave and SNSA is insignificant. In conclusion, the increase in α-waves showed that EEG was most stable at 5000 K. The results of this study can be applied to the upcoming autonomous driving era to induce high driver satisfaction. Furthermore, this approach could eventually lead to the acceptance of autonomous vehicles by suggesting a positive effect of autonomous driving.