• Title/Summary/Keyword: EDTA recovery

Search Result 58, Processing Time 0.033 seconds

Recycling of chelating agents after extraction of heavy metals contaminated in soil

  • Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.139-148
    • /
    • 2001
  • Heavy metals such as Cu, Ni, Cd, and Pb were chemically extract from the contaminated soils using the chelating agents, EDTA and DTPA. These chemical extraction have been focused on its applicability to a wide range of soils. Results of extractive efficiency for heavy metal follow the order : Cu-EDTA $\geq$ Ni-EDTA > Pb-EDTA > Cd-EDTA > Cu-DTPA> Pb-DTPA. This result is coincided with order of conditional formation constants(Kr) of metal-chelate agent. The second study involved the recovery of the metals and EDTA from complex solutions by an electromembrane process. The overall processes of regeneration, recovery, and reuse were evaluated. The electrochemical studies showed that copper could be chosen as an electrode to plate Cd, Cu, and Pb. At least 95% of 75 of EDTA and associated Cu or Pb could be recovered by the electromembrane process. Recovery of Cd by electodeposition was not possible with the copper electrode. The percent EDTA recovery is equal to the percentage of metal electroplated from the chelates.

  • PDF

Recovery of EDTA from Waste Fluid of Archeological Waterlogged Wood Conservation Treatment (수침목재유물(水浸木材遺物) 보존처리(保存處理) 폐수(廢水)로부터 EDTA회수(回收))

  • Yang, Seok-Jin;Song, Ju-Yeong;Kim, Jong-Hwa
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.58-63
    • /
    • 2011
  • pH control-precipitation method is used for recovery of EDTA from waste fluid of archeological waterlogged wood conservation treatment. EDTA has been used for eliminating of blacken effect in archeological waterlogged wood which was buried in the ground for long period of time. The black substance is generated by Fe$^{3+}$ in the soil reacted with tannin in the archeological waterlogged wood. In order to remove the black substance in archeological waterlogged wood, EDTA was used. The black substance is eliminated from wood as Fe-EDTA complex are formed, and EDTA is separated and precipitated from Fe-EDTA complexes at pH 2.68 or less. The result of analysis of the precipitated products and the commercial EDTA by FT-IR and FE-SEM showed that precipitated product by pH adjusted was not a type of Fe-EDTA complex, but pure EDTA. In this study, Fe$^{3+}$ from waste fluid of EDTA can be separated by HCl added. EDTA can be recycled by using the method of precipitation of EDTA in a strong acid.

TiO2 Reuse and Recovery from the Photocatalytic Oxidation of Cu(II)-EDTA using TiO2/UV-A System (TiO2/UV-A 시스템을 이용한 Cu(II)-EDTA의 광촉매 산화반응에서 TiO2 재사용 및 회수)

  • Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.84-91
    • /
    • 2005
  • $TiO_2-catalyst$ suspensions work efficiently in Photocatalytic oxidation (PCO) for wastewater treatment. Nevertheless, once photocatalysis is completed, separation of the catalyst from solution becomes the main problem. The PCO of Cu(II)-EDTA was studied to determine the reusability of the titanium dioxide catalyst. Aqueous solutions of $10^{-4}M$ Cu(II)-EDTA were treated using illuminated $TiO_2$ particles at pH 6 in a circulating reactor. $TiO_2$ was reused in PCO system for treatment of Cu(II)-EDTA comparing two procedures: reuse of water and $TiO_2$ and reuse of the entire suspension after PCO of Cu(II)-EDTA. The results are as follows; (i) Photocatalytic efficiency worsens with successive runs when catalyst and water are reused without separation and filtration, whereas, when $TiO_2$ is separated from water, the reused $TiO_2$ is not deactivated. (ii) The $TiO_2$ mean recovery (%) with reused $TiO_2$ was 86.4%(1.73g/L). Although the mean initial degradation rate of Cu(II)-EDTA and Cu(II) was lower than that using fresh $TiO_2$, there was no significant change in the rate during the course of the three-trial experiment. It is suggested that Cu(II)-EDTA could be effectively treated using an recycling procedure of PCO and catalyst recovery. (iii) However, without $TiO_2$ separation, the loss of efficiency of the PCO in the use of water and $TiO_2$ due to Cu(II), DOC remained from previous degradation and Cu(II)-EDTA added to the same suspension was observed after 2 trials, and resulted in the inhibition of the Cu(II)-EDTA, Cu(II) and DOC destruction.

A study on the Recovery of waste fluids of the conservation treatment of waterlogged wooden artifacts (수침목재유물보존처리 폐액의 재활용에 관한 연구)

  • Yang, Seok-Jin;Kim, Jong-Hwa;Song, Ju-Yeong;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.108-115
    • /
    • 2012
  • Archaeological waterlogged woods found under the sea, in lakes, or in swamp environments are generally weak and fragile. If waterlogged wood materials were taken out of the water and left without modification, they would collapse and lose their original dimensions completely. Conservation is performed to replace the water with chemical agents and to give dimensional stabilization and durability. EDTA and PEG are the most commonly used in the preservation of wood. pH control-precipitation method is used for recovery of EDTA from waste fluid of archeological waterlogged wood conservation treatment. The black substance is eliminated from wood as Fe-EDTA complex are formed and EDTA is separated and precipitated from Fe-EDTA complexes at pH 2.68 or less. The result of analysis of the precipitated products and the commercial EDTA by FT-IR and FE-SEM showed that precipitated product by pH adjusted was not a type of Fe-EDTA complex, but pure EDTA. Waste fluid produced in PEG treatment shows the black color and has an offensive odor by organic matter extracted from wood. Color of waste fluid is decolored with oxidation reaction by peroxy hydrate. In FT-IR and SEM-EDX of PEG after freeze-drying process, no significant change of functional groups induced from oxidation is observed, and any metal ion does not exist in the solid PEG specimen. The molecular weight of PEG is measured using GPC and viscometry. Properties of PEG before and after preservation treatment, and after oxidation with $H_2O_2$ were not changed. Consequently, the peroxidation with $H_2O_2$ is a reasonable and simple method to decolor the used PEG solution.

Laboratory Tests of Chromium-51 Complexes for teak Detection in Pipes Carrying A Liquid Flow

  • Kim, You-Sun;Lee, Byung-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.231-237
    • /
    • 1974
  • For detection and localization of leaks in closed vessels or pipes carrying liquid flow, $^{51}$ Cr-EDTA and $^{51}$ Cr-DTPA were synthesized and, the column and batch equilibrium experiments were carried out. In the column experiment, the recovery of $^{51}$ Cr-EDTA is 100% in quartz sand and 80.9% in steel sawdust, and that of $^{51}$ Cr-DTPA is 77.4% in quartz sand and 6.4% in steel sawdust. The recovery curve. $^{51}$ Cr-DTPA system in steel sawdust does not show a certain plateau, exceptionally. In general, $^{51}$ Cr-EDTA is adsorbed less than $^{51}$ Cr-DTPA. In the batch equilibrium experiment, the distribution coefficients (Kd) and effect of pH were investigated by using quartz sand, montmorillonite, steel sawdust, and mixed cement raw material as media. In general, the Kd values for $^{51}$ Cr-EDTA are lower than that of $^{51}$ Cr-DTPA. The Kd values for $^{51}$ Cr-EDTA are almost zero at pH 6.0, 7.0, and 8.0.

  • PDF

EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions

  • Ravi, Seenu;Zhang, Siqian;Lee, Yu-Ri;Kang, Kyoung-Ku;Kim, Ji-Man;Ahn, Ji-Whan;Ahn, Wha-Seung
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.210-218
    • /
    • 2018
  • Ethylenediaminetetraacetic acid (EDTA)-functionalized KIT-6 and KCC-1 mesoporous silicas were prepared via post-synthesis grafting and examined for their ability to promote the recovery of rare earth metal ions such as $Nd^{3+}$ from an aqueous medium. The obtained adsorption isotherms were fitted to the Langmuir model, which gave a maximum adsorption of $Nd^{3+}$ ions of 109.8 and 96.5 mg/g for KIT-6-EDTA and KCC-1-EDTA, respectively, at $25^{\circ}C$ and pH 6. The adsorption kinetic profile of KIT-6 was faster than KCC-1. KIT-6 was also proved to be more stable against desorption under acidic regeneration conditions.

Separation and Recovery of Rare Earths by Ion Exchange Chromatography (이온교환 크로마토그래피에 의한 희토류 원소의 분리와 회수)

  • Cha, Ki Won;Park, Kwang Won;Hong, Sung Wook
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.612-638
    • /
    • 1997
  • The methods of separation and recovery of rare earth elements in monazite sand have been studied by the ion exchange chromatography. Both of cation and anion exchange resin were used as ion exchange resins and the solutions of EDTA, DTPA, IMDA and Ln-EDTA were used as eluents. The H+, Zn2+, Fe3+, Al3+, Cu2+, and NH4+ forms of cation exchange resin were used as retaining ions. Ln-EDTA solution was loaded on the EDTA form of anion exchange resin and separated. The Ln-EDTA solution was also used as an eluent for a selective separation of one element from the rare earth mixture solution. The size effects of resin column, the elution mechanism for the various elution types and the separation of a large amount of rare earths were studied.

  • PDF

Determination of Emamectin Benzoate in Eel, Halibut, and Shrimp Using QuEChERS-EDTA and LC-MRM

  • Cho, Ha Ra;Kim, Dong Yoon;Lee, Hyo Chun;Han, Sang Beom;Shin, Ho-Chul;Choi, Yong Seok
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.100-104
    • /
    • 2018
  • As a part of efforts to establish the positive list system (PLS) in South Korea, a method to determine residual emamectin benzoate (EB) in various aquatic products using QuEChERS-EDTA and LC-MRM was developed. The developed method was validated in the aspects of specificity, linearity (correlation coefficient of at least 0.996), sensitivity (the limit of detection and the lower limit of quantitation ${\leq}5ng/g$), recovery (the recovery range of 87.4 and 96.2), and precision (the relative standard deviation of recovery between 0.9 and 13.5). Additionally, the validated method was successfully applied for monitoring EB contamination in eel, halibut, and shrimp collected from local food markets. To our knowledge, the present method is the first one to determine residual EB in various aquatic products at the level satisfying the PLS and could contribute to the establishment of the PLS in South Korea.

Release of Cu from SDS micellar solution using complexing agents

  • 김호정;백기태;김보경;이율리아;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.307-310
    • /
    • 2004
  • Micellar enhanced ultrafiltration (MEUF) is a surfactant-based separation process and it can remove heavy metal ions from aqueous stream effectively. However, it is necessary to recover and reuse surfactants for economic feasibility because surfactant is expensive. Foam fractionation was investigated for both anionic and cationic surfactant recovery. Chelating agent such as ethylenediaminetetraacetic acid (EDTA) was studied for the separation of heavy metals from surfactant solution. Anionic surfactants bound with heavy metals can be recovered by lowering pH (acidification). In this study, citric acid and imminodiacetic acid (IDA) were applied to release copper from sodium dodecyl sulfate (SDS) micellar solution and compared with EDTA. Precipitation of copper by ferricynide and sodium sulfide were also investigated. As a result, ca. 100 % of copper was released from SDS micellar solution by 5 mM of EDTA and citric acid. And 3.3 mM of ferricyanide formed precipitate with 82.7 % of copper. 5 mM of IDA and sodium sulfide released or formed precipitate 82.5 % and 58.9 % of copper, respectively. Citric acid is harmless to environments and ferricyanide precipitates with Cu easily. Therefore, it is considered that citric acid and ferricyanide have competiveness over a famous chelating agent, EDTA, for the separation of Cu from SDS solution.

  • PDF

Spectrofluorimetric determination of EDTA with Cu(II)-tiron chelate (Cu(II)-tiron 킬레이트를 이용한 EDTA 분광형광법 정량)

  • Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.231-235
    • /
    • 2011
  • A spectrofluorimetric method for the determination of EDTA in real samples such as mayonnaise, powder detergent and cleansing cream with tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid) as a fluorimetric reporter was developed. When tiron is chelated with Cu(II), the fluorescent intensity is decreased by a quenching effect. However, when Cu(II)-tiron chelate reacts with EDTA, fluorescent intensity is increased as tiron is released. Several experimental conditions such as pH of the sample solution, the amount of Cu(II), the amount of tiron, heating temperature and heating time were optimized. Fe(III) interfered more seriously than any other ions, interference of Fe(III) could be disregarded, because Fe(III) was scarcely contained in selected real samples. The linear range of EDTA was from $8.0{\times}106{-8}\;M$ to $2.0{\times}10^{-6}\;M$. With this proposed method, the detection limit of Fe(III) was $5.2{\times}10^{-8}\;M$. Recovery yields of 92.7~99.3% were obtained. Based on experimental results, it is proposed that this technique can be applied to the practical determination of EDTA.