• Title/Summary/Keyword: EDM electrode

Search Result 114, Processing Time 0.03 seconds

Machining Characteristics of ED-Drilling (ED-Drilling의 방전가공 특성)

  • 김창호;허관도;예상돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.827-830
    • /
    • 2000
  • This paper describes the machining characteristics of the sintered carbide and die steel by electric discharge drilling with various tubular electrodes. Electrical discharge machining(EDM) removes material from the workpiece by a series of electrical sparks that cause localized temperatures high enough to melt or vaporise the metal in the vicinity of the charge. In the experiment, four types of electrode which have different diameter are used with the application of continuous direct current and axial electrode feed. The controlled factors include the dimension of the electrode. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to facilitate the removal of machining debris from the hole.

  • PDF

Machining Rate and Electrode Wear Characteristics in Micro-EDM of Micro-Holes (미세구멍의 미세방전 가공에서 가공율과 전극소모 특성)

  • Kim, Gyu-Man;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.94-100
    • /
    • 1999
  • Micro-EDM is widely used in machining of miro-parts such as micro-shafts and micro-holes. In order to select proper machining conditions and to reduce the machining time, it is necessary to understand machining characteristics under various machining conditions. Micro-hole machining tests were performed with round shape electrodes with different capacitances and voltages of the power source. The effects of the electrode rotational speed and diameter on the machining rate were also observed. From the experimental results, it was found that capacitance and voltage have significant effects on machining rate and the machined surface integrity. With higher capacitance and higher voltage, higher machining rate was observed together with poorer surface integrity. The electrode diameter was also found to have an effect on the machining rate and electrode wear.

  • PDF

Determination of EDM Parameters based on Electrode Wear (전극 소모비에 기초한 방전 조건 생성)

  • 주상윤;이건범;왕지남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1154-1158
    • /
    • 1995
  • Electrical Discharge Machining, with its ability to machine hard metals and tough shapes has become a very desirable process. In the past few years, Electrical Discharge Machining (EDM) has been solidly established in tool-room and large-scale production. However, in spite of its indispensability in many areas of metal removal applications, the theoretical basis of EDM process is yet to be established. More importantly, the information regarding essential technology parameters such as machining rate and resulting surface roughness integrity, has not been raised to the level of a general technical science. The paper presents a method, which can be determining approprate machining parameters for the given parameters such as electrode wear and surface roughness based on machining guideline utilizing neural networks.

  • PDF

Development of Micro-EDM Machine for Microshaft and Microhole Machining (미소 축.구멍 가공용 미세 방전 가공기의 개발)

  • 김규만;김보현;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1075-1079
    • /
    • 1995
  • It is difficult to machine microparts, such as microshaft and microholes, by conventional machining. Such micropart can be easily machined by EDM because it's machining force is very low. In micro-EDM, the precise electrode movement and discharge energy control are important. Therefore, high precision motion stage and EDM device with high performance is necessary. In this research, a new EDM machine was developed and microshaft and microhole, with various shape and size, was machined.

  • PDF

Adaptive Identification Method of EDM Parameters Using Neural Network (신경망을 이용한 방전 조건의 적응적 결정 방법)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-49
    • /
    • 1998
  • Adaptive neural network approach is presented for determining Electrical Discharge Machining (EDM) parameters. Electrical Discharge Machining has been widely used with its capability of machining hard metals and tough shapes. In the past few years, EDM has been established in tool-room and large-scale production. However. in spite of it's wide application, an universal selection method of EDM parameters has not been established yet. No attempt has been tried before to suggest a logical method in determining essential machine parameters considering the machining rate and resulting surface roughness integrity. The paper presents a method, which is focusing on determining appropriate machining parameters. Depending on the electrode wear and surface roughness, an adaptive neural network is designed for providing suitable machining guideline.

  • PDF

Die-Sinking Electrical Discharge Machining with Dielectric Fluid Ejection System through the Inside of the Electrode (전극봉내 방전유 분산시스템에 의한 형조방전기공)

  • 왕덕현;우정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Experimental study if die-sinking electrical discharge machining(EDM) was conducted with rotating electrode system including inside hole for increasing the material removal rate(MRR). With the help of dielectric fluid flow through the inside according to the different internal diameter of the hole, the molten workpiece debris could be removed and flushed out during the EDM, Cold die alloy(SKD-1) was executed for different peak current and duty factor. From this study, the MRR was found to be increased with the peak current. The more MRR was obtained for the case of electrode inside diam-eter of 10 mm, but the MRR was decreased as the diameter near at the 4mm and 6mm. The values of surface roughness and roundness were analyzed under various conditions, and these were affected by the inside diameter change of electrode.

  • PDF