• Title/Summary/Keyword: EDCs

Search Result 124, Processing Time 0.027 seconds

Estrogenic Activity Assessment of Alkylphenolic chemicals using in vitro assays : II. Competitive Receptor Binding Assay

  • Park, Hyo-Joung;Lee, Ho-Sa;Lee, Kilchul;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2001.05a
    • /
    • pp.126-126
    • /
    • 2001
  • Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wild range of environmental and industrial chemicals. It is clear that in vivo methods will be required to identify adverse effects produced by these chemicals. (omitted)

  • PDF

Dertermination of Alkylphenols, Chlorophenols and Bisphenol A in Various Samples by Freezing Filtration and GC/MS-SIM

  • Kim, Hyub
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.68.1-68.1
    • /
    • 2003
  • A method for determination 11 endocrine disrupting chemicals of phenols in various samples was deloped. The alkylphenols, chlorophenols and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) followed by two work-up methods for comparison; isobutoxycarbonyl (isoBOC) derivatization method and tert-butyldimethylsilyl (TBDMS) derivatization method. Eleven endocrine disrupting chemicals (EDCs) of phenols in biological samples were extracted with acetonitrile and then acetonitrile layer was refrigerated at -60$^{\circ}C$ for 2 hours (freezing filtration). (omitted)

  • PDF

Studies on the protective effect of Cheju and Brazil pectin on the male reproductive system damaged by 2.3.7.8-tetrachlorodibenzo-P-dioxin

  • Shim, Kyoo-Jung;Choung, Se-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.283.1-283.1
    • /
    • 2002
  • The adverse health effects on humans and domestic and wildlife species by exposing to environmental contaminants. which interact with the endocrine system. have he en treated as an important issue without hesitation throughout the 1990s. The chemicals with practical and/or potential interfering actions with the endocrine system functions are called endocrine disrupting chemicals (EDCs). (omitted)

  • PDF

Uterotrophic Assay Using Ovariectomized Female Rats with Sub-cutaneous Administration

  • Kim, Hyung-Sik;Han, Soon-Young;Lee, Rhee-Da;Kil, Kwang-Sup;Park, Kui-Lea
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.78-83
    • /
    • 2000
  • The objective of this study was to prevalidate the Organization for Economic Cooperation and Development's (OECD) rodent uterotrophic assay as a test method for screening of potential endocrine disrupting chemicals (EDCs). This study was conducted exactly as described in the OECD protocol documents. A positive control substance, 17$\alpha$-ethinyl estradiol (EE), was administered daily for three days to ovariectomized (OVX) Sprague-Dawley rats at various doses for determine the dose-response curve. Additionally, a pure antiestrogenic chemical, ZM189, 154 was administered to OVX rats at the same time EE to determine the effectiveness of the material against blocking the estrogenic effects of EE. At higher concentration of EE (10 $\mu\textrm{g}$/kg), a statistically significant difference in body weight gain and food consumption was observed compared to vehicle controls. In uterine responses, EE produced a dose-related increase in uterus weights compared to vehicle control. These increases were statistically significant at the >1.0 $\mu\textrm{g}$/kg doses. However, a similar dose-response relationship was not observed in vagina weight. A comparison of the two groups receiving ZM189,154 (0.1 and 1.0 mg/kg) with 0.3 $\mu\textrm{g}$/kg of EE and the group receiving only 0.3 $\mu\textrm{g}$/kg of EE showed dose-related decreases in uterus weights. However, statistical significance was shown in 1.0 mg/kg of ZM189,154. In conclusion, administration of EE produced a dose-related increase in uterine (wet and blotted) weights. Additionally, the 1.0mg/kg dose of ZM189,154 was effective in blocking the estrogenic activity of EE. These data suggest 3-day uterotrophic assay using OVX rats may serve as a good tool for EDCs screening.

  • PDF

The Mentum Deformity of C. riparius Following Exposure to Bisphenol A and 4-nonylphenol (Bisphenol A와 4-nonylphenol에 노출된 C. riparius (Diptera: Chiromidae)의 하순기절 기형성)

  • Kwak, Inn-Sil;Lee, Won-Choel
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.1
    • /
    • pp.66-71
    • /
    • 2007
  • The fourth instar larvae of C. riparius were treated with potential endocrine disruption chemicals (EDCs) such as bisphenol A (BPA) and 4-nonylphenol and the effects of morphological abnormalities were observed. The deformities of the mentum following exposure to EDCs showed the smooth tooth, the loss of tooth and deformed tooth. The incidence rates of the mentum deformity were associated with chemicals: BPA $31{\sim}90%$, and 4-nonlyphenol was $40{\sim}80%$. As the concentration of BPA increased, the incidence of deformed mentum was dose dependent. While the incidences of deformed mentum following exposure to 4-nonlyphenol was not associated with their concentrations. The deformed MLT observed smooth or round tooth and the deformity of LT showed loss of one or more than tooth. Also, the MIX type was usually smooth or loss tooth. The abundance of deformity type for the mentum showed MIX (MLT+LT) > LT (lateral teeth) > MLT (median lateral teeth).

Genomic Alteration of Bisphenol A Treatment in the Testis of Mice

  • Kim, Seung-Jun;Park, Hye-Won;Youn, Jong-Pil;Ha, Jung-Mi;An, Yu-Ri;Lee, Chang-Hyeon;Oh, Moon-Ju;Oh, Jung-Hwa;Yoon, Seok-Joo;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.216-221
    • /
    • 2009
  • Bisphenol A (BPA) is commonly used in the production of pharmaceutical, industrial, and housing epoxy, as well as polycarbonate plastics. Owing to its extensive use, BPA can contaminate the environment either directly or through derivatives of these products. BPA has been classified as an endocrine disruptor chemicals (EDCs), and the primary toxicity of these EDCs in males involves the induction of reproductive system abnormality. First, in order to evaluate the direct effects on the Y chromosome associated with reproduction, we evaluated Y chromosome abnormalities using a Y chromosome microdeletion detection kit. However, we detected no Yq abnormality as the result of BPA exposure. Secondly, we performed high-density oligonucleotide array-based comparative genome hybridization (CGH) to assess genomic alteration as a component of our toxicity assessment. The results of our data analysis revealed some changes in copy number. Seven observed features were gains or losses in chromosomal DNA (P-value<1.0e-5, average log2 ratio>0.2). Interestingly, 21 probes of chr7:7312289-10272836 (qA1-qA2 in cytoband) were a commonly observed amplification (P-value 3.69e-10). Another region, chr14:4551029-10397399, was also commonly amplified (P-value 2.93e-12, average of log2 ratios in segment>0.3786). These regions include many genes associated with pheromone response, transcription, and signal transduction using ArrayToKegg software. These results help us to understand the molecular mechanisms underlying the reproductive effects induced by BPA.

Classification of Environmental Toxicants Using HazChem Human Array V2

  • An, Yu-Ri;Kim, Seung-Jun;Park, Hye-Won;Kim, Jun-Sub;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.250-256
    • /
    • 2009
  • Toxicogenomics using microarray technology offers the ability to conduct large-scale detections and quantifications of mRNA transcripts, particularly those associated with alterations in mRNA stability or gene regulation. In this study, we developed the HazChem Human Array V2 using the Agilent Sure-Print technology-based custom array, which is expected to facilitate the identification of environmental toxicants. The array was manufactured using 600 VOCs and PAHs-specific genes identified in previous studies. In order to evaluate the viability of the manufactured HazChem human array V2, we analyzed the gene expression profiles of 9 environmental toxicants (6 VOCs chemicals and 3 PAHs chemicals). As a result, nine toxicants were separated into two chemical types-VOCs and PAHs. After the chip validations with VOCs and PAHs, we conducted an expression profiling comparison of additional chemical groups (POPs and EDCs) using data analysis methods such as hierarchical clustering, 1-way ANOVA, SAM, and PCA. We selected 58 genes that could be classified into four chemical types via statistical methods. Additionally, we selected 63 genes that evidenced significant alterations in expression with all 13 environmental toxicants. These results suggest that the HazChem Human Array V2 will expedite the development of a screening system for environmentally hazardous materials at the level of toxicogenomics in the future.

Combination Effect of Bisphenol A and Nonylphenol to Japanese Medaka (Oryzias latipes) (일본산 송사리 (Oryzias latipes)에 대한 Bisphenol A와 Nonylphenol의 혼합효과)

  • Seo, Jin-Won;Kim, Woo-Keun;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • 생활하수, 공장폐수, 농경유출수에 의해 수생태계로 유입된 다양한 화학물질들은 수서곤충이나 어류와 같은 수생생물에게 나쁜 영향을 주곤 한다. 비스페놀A와 노닐페놀을 포함하는 많은 화학물질들이 내분비계 장애물질(EDCs)로 의심되고 있고, 그들은 환경속에서 서로 다른 혼합형태로 공존하기도 한다. 따라서 비스페놀A와 노닐페놀의 혼합물이 독성과 생식학적 반응에 미치는 영향을 살펴보기 위해 일본산 송사리의 수정란 치사율, 부화율 및 부화시간, 치어의 성장율 및 비텔로제닌 농도 등이 측정되었다. 수정된 지 24시간 이내의 수정란을 대조군, 양성대조군($17{\beta}-estradiol$), 그리고 서로 다른 농도의 비스페놀A와 노닐페놀의 혼합물에 부화 후 60일까지 유수식 조건하에 노출시켰다. 수정란${\sim}$치자어 단계에서는 대조군과 비교하여 실험군의 치사율 및 부화율, 부화시간에 차이가 나타나지 않았으며, 부화 후 60일간의 노출 후 성장(길이, 무게)에 있어서도 비록 양성대조군에서 낮은 성장상태를 보였지만 다른 혼합물의 실험군들과는 차이를 보이지 않았다. 한편 체내 비텔로제닌 농도는 혼합물의 농도증가에 따라 증가하였으며 수컷의 경우 최저농도의 혼합물(Treatment A)을 제외한 실험군에서 농도증가에 따라 증가하였다. 반면 양성대조군의 경우 수컷이 발견되지 않았고 암컷 체내의 비텔로제닌 농도는 최고농도의 혼합물(Treatment D) 실험군과 비슷한 경향을 보였다. 위 실험을 통해 각각의 내분비계 장애물질이 개별적으론 생식발달 및 비텔로제닌 유도에 무영향농도(NOEC)라 하더라도 혼합된 경우 영향이 나타날 수 있다는 것을 보여주었으며, 이는 수환경 내 다양한 화학물들의 혼합효과(combination effect)가 생태위해성평가를 좀더 면밀하게 하기 위해서 주의 깊게 고려되어야 한다고 제안한다.

Mining of Biomarker Genes from Expressed Sequence Tags and Differential Display Reverse Transcriptase-Polymerase Chain Reaction in the Self-fertilizing Fish, Kryptolebias marmoratus and Their Expression Patterns in Response to Exposure to an Endocrine-disrupting Alkylphenol, Bisphenol A

  • Lee, Young-Mi;Rhee, Jae-Sung;Hwang, Dae-Sik;Kim, Il-Chan;Raisuddin, Sheikh;Lee, Jae-Seong
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.287-303
    • /
    • 2007
  • Expressed sequence tags (ESTs) and differentially expressed cDNAs from the self-fertilizing fish, Kryptolebias marmoratus were mined to develop alternative biomarkers for endocrine-disrupting chemicals (EDCs). 1,577 K. marmoratus cDNA clones were randomly sequenced from the 5'-end. These clones corresponded to 1,518 and 1,519 genes in medaka dbEST and zebrafish dbEST, respectively. Of the matched genes, 197 and 115 genes obtained Unigene IDs in medaka dbEST and zebrafish dbEST, respectively. Many of the annotated genes are potential biomarkers for environmental stresses. In a differential display reverse transcriptase-polymerase chain reaction (DD RT-PCR) study, 56 differential expressed genes were obtained from fish liver exposed to bisphenol A. Of these, 16 genes were identified after BLAST search to GenBank, and the annotated genes were mainly involved in catalytic activity and binding. The expression patterns of these 16 genes were validated by real-time RT-PCR of liver tissue from fish exposed to bisphenol A. Our findings suggest that expression of these 16 genes is modulated by endocrine disrupting chemicals, and therefore that they are potential biomarkers for environmental stress including EDCs exposure.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.