• Title/Summary/Keyword: EDCS

Search Result 124, Processing Time 0.025 seconds

Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;de la Cruz, Joseph;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4809-4813
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases.

Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;Cruz, Joseph Dela;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5117-5121
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells were used as a tumorigenic model. These were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. Expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, were subsequently down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD and various concentrations of LRE showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analyses also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated disease.

The Mentum Deformity of C. plumosus Following Exposure to Endocrine Disruption Chemicals (내분비교란 물질에 노출된 C. plumosus (장수깔따구)의 하순기절 기형성)

  • Lee, Won-Choel;Kwak, Inn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.11-17
    • /
    • 2005
  • Egg masses of C. plumosus were collected from Jungnang Stream in Seoul and reared in an incubator chamber. The larvae of C. plumosus were treated with potential endocrine disruption chemicals (EDCs) such as Diethylhexyl phthalate (DEHP), Bisphenol A (BPA) and Tebufenozide, and the effects of morphological abnormalities were observed. The deformities of the mentum following exposure to EDCs showed the smooth/round tooth, the loss of ${\ge}$1 tooth, reduced median lateral teeth (MLT) and light brown color. The incidence rates of the mentum deformity were associated with chemicals: BPA (73.7 ${\sim}$ 90.9%)>tebufenozide (57.6 ${\sim}$ 78.9%)>DEHP (46.2 ${\sim}$ 85.7%). The deformity type of the mentum showed MIX (MLT+LT, 32 ${\sim}$ 46%)>MLT (25 ${\sim}$ 34%)>LT (lateral teeth, 3 ${\sim}$ 7%). Also, the incidence of MIX type was in the order of BPA (46%)>DEHP (33%) >tebufenozide (32%), and that of MLT type showed DEHP (34%)>tebufenozide (31%)>BPA (25%). As the concentration of Tebufenozide increased, the incidence of light brown mentum was dose dependent. While the incidences of light brown mentum following exposure to BPA and DEHP were not associated with their concentrations.

Modeling for the fate of Organic Chemicals in a Multi-media Environment Using MUSEM (다매체 환경 모델 MUSEM을 이용한 유해화학물질의 환경거동예측 모델링)

  • Roh, Kyong-Joon;Kim, Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2007
  • Pollution by chemical substances such as POPs, EDCs and PBTs in the ecosystem has become more complex and varied, increasing the possibility of irreversible damage to human health or the ecosystem. It is necessary to have a exposure assessment in a multi-media environment for various chemical substances is required for efficient management. This study applied MUSEM(Multi-media Simplebox-systems Environmental Model), a multimedia environmental model that can simultaneously evaluate the possibility of exposure of hundreds of chemical substances in order to efficiently manage chemical substances that can have negative impact on human health or ecological environment through environmental contamination. MUSEM executed the modeling for Japan by setting all 47 prefectures of japan as the regional area for 62 chemical substances and the rest of the territory of japan, excluding regional area, as the continental area and made the estimation of concentration among environment media in each administrative area and made the sensitivity analysis on Tokyo area. The results of simulation for chemical distribution showed that most of the target chemicals located in water region. The result of sensitivity analysis for octanol-water partition rate showed that the concentration change of soil in urban/industrial area and sediment in freshwater was high. In the case of sensitivity analysis for degradation rate showed that the concentration change of freshwater, soil in urban/industrial area, and sediment in freshwater was high.

  • PDF

Environmental Exposure to Mercury, Cadmium, and Pyrethroid Pesticide and Its Association with Delayed Puberty in Children: Korean National Environmental Health Survey (KoNEHS) 2015-2017 (환경 중 수은, 카드뮴 및 피레스로이드계 살충제 노출과 아동의 사춘기 지연 간의 연관성: 제3기 국민환경보건기초조사(2015-2017))

  • Lee, Ju-Yeon;Chae, Woo Ri;Huh, Da-An;Moon, Kyong Whan
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.245-258
    • /
    • 2021
  • Objectives: In many previous studies, endocrine disruptors (EDCs) have been found to affect delays in puberty. Various EDCs have been reported on, but there have been only limited epidemiologic studies on the effects of exposure to environmental heavy metals and pyrethroid pesticides on puberty delay. Therefore, the aim of this study was to investigate the association of exposure to environmental mercury, cadmium, and pyrethroid pesticides with delayed puberty in children based on national survey data that represents Korean children. Methods: We selected 450 children at the ages of 9-11 years old from the third Korean National Environmental Health Survey (3rd KoNEHS). The relations of urinary Hg, Cd, and 3-PBA with pubertal development were evaluated using multiple logistic regression analyses. Results: Urinary Hg levels were significantly associated with delayed puberty in boys [testicle development: OR=0.41 (95% CI: 0.20, 0.84); genitalia development: OR=0.35 (95% CI: 0.15, 0.81)]. Girls with higher Hg levels were more likely to experience delayed menarche [OR=0.23 (95% CI: 0.06, 0.90)]. We observed a significant 49% reduction in odds for menarche per increasing unit of urinary cadmium levels [OR=0.51 (95% CI: 0.24, 1.01)]. In addition, urinary 3-PBA showed a negative association with genitalia development in boys and menarche in girls [genitalia development: OR=0.73 (95% CI: 0.55, 0.96); menarche: OR=0.56 (95% CI: 0.32, 1.00)]. Conclusions: The results of this study support the hypothesis that exposure to environmental mercury, cadmium and pyrethroid pesticides may affect puberty delays. Additional evidence needs to be obtained through further prospective studies.

Effects of Bisphenol A and BPA Alternatives on the Nervous System (Bisphenol A와 대체물질들이 신경계에 미치는 영향)

  • Ha Jung Moon;Seung Hyun Lee;Hyun Seung Shin;Eui-Man Jung
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.371-381
    • /
    • 2023
  • Endocrine disrupting chemicals (EDCs), used in a variety of products in modern society, are hormone-like substances that cause various diseases. Humans are exposed to EDCs through their inclusion in pesticides, plastics, cosmetics, detergents, and drugs. Bisphenol A (BPA), one of the representative endocrine disruptors, is an estrogen-like substance that has been widely used commercially in plastic and epoxy resins. BPA is a chemical that can disrupt the endocrine system, leading to reduced reproductive function, obesity, cancer, and neurodevelopmental disorders. Since the adverse health effects of BPA began to be reported the use of BPA has been regulated worldwide. Various alternatives to BPA have been widely used worldwide; representatively, bisphenol S (BPS) and bisphenol F (BPF) are the most commonly used in commercial contexts. BPS and BPF may cause endocrine-disrupting effects like those of BPA due to their similar chemical structures. Recent studies have reported that BPS and BPF disrupt the neurodevelopmental process and cause neurodevelopmental disorders. Therefore, future studies will be required for safety verification of BPA alternatives and the development of new alternatives to BPA for brain health. In this review, we reviewed the effects of BPA and the alternatives, BPS and BPF, on the nervous system.

Tobacco Smoking Could Accentuate Epithelial-Mesenchymal Transition and Th2-Type Response in Patients With Chronic Rhinosinusitis With Nasal Polyps

  • Ki-Il Lee;Younghwan Han;Jae-Sung Ryu;Seung Min In;Jong-Yeup Kim;Joong Su Park;Jong-Seok Kim;Juhye Kim;Jubin Youn;Seok-Rae Park
    • IMMUNE NETWORK
    • /
    • v.22 no.4
    • /
    • pp.35.1-35.16
    • /
    • 2022
  • Tobacco smoking (TS) has been known as one of the most potent risk factors for airway inflammatory diseases. However, there has been a paucity of information regarding the immunologic alteration mediated by TS in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). To identify the effect of TS, we harvested human tissue samples (never smoker: n=41, current smoker: n=22, quitter: n=23) and analyzed the expression of epithelial-derived cytokines (EDCs) such as IL-25, IL-33, and thymic stromal lymphopoietin. The expressions of Th2 cytokines and total serum IgE showed a type-2 inflammatory alteration by TS. In addition, the epithelial marker E-cadherin and epithelial-mesenchymal transition (EMT)-associated markers (N-cadherin, α-SMA, and vimentin) were evaluated. Histological analysis showed that EDC expressions were upregulated in the current smoker group and downregulated in the quitter group. These expression patterns were consistent with mRNA and protein expression levels. We also found that the local Th2 cytokine expression and IgE class switching, as well as serum IgE levels, were elevated in the current smoker group and showed normal levels in the quitter group. Furthermore, the expressions of E-cadherin decreased while those of N-cadherin, α-SMA, and vimentin increased in the current smoker group compared those in the never smoker group. Taken together, these results indicate that TS contributes to the deterioration of pathogenesis by releasing local EDCs and Th2 cytokines, resulting in EMT in patients with CRSwNP. We verified that alterations of immunological response by TS in sinonasal epithelium can play a vital role in leading to CRSwNP.

Induction of Intersex and Masculinization of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae) by Zinc

  • Ju, Sun-Mi;Park, Jung-Jun;Lee, Jung-Sick
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.339-344
    • /
    • 2009
  • This study aims to find out the effect of heavy metals, as is the case of EDCs (endocrine disrupting chemicals), on reproductive endocrine disruption of aquatic animals. In the present experiment zinc, which is a heavy metal well known for its androgenous activity, was used. The experimental period was 24 weeks, starting in November during the inactive stage of the clam's reproductive cycle. The experimental groups were composed of one control condition and three zinc exposure conditions (0.64, 1.07, and 1.79 mg/L). The sex ratio (F:M) was 1:1.06 in the control group and 1:1.70 in all the exposed group, illustrating the tendency for higher proportion of males with increases in zinc concentration. Gonad maturity was higher in 1.07, and 1.79 mg/L groups compared to the control group, with higher maturity observed in males than females. Intersex individuals made up 24.7% of the exposed group, while females exhibited a higher ratio than the males with increasing zinc concentration. The results of this study indicate that zinc functions as an androgenic effector on the reproduction of Gomphina veneriformis.

Ecological modeling for toxic substances - I . Numerical simulation of transport and fate of Nonylphenol in Tokyo Bay- (유해화학물질의 생태계 모델링 - I. 동경만 Nonylphenol의 환경동태 해석 -)

  • Kim Dong-Myung;Shiraishi Hiroaki
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.827-835
    • /
    • 2005
  • A three-dimensional ecological model (EMT -3D) was applied to Nonylphenol in Tokyo Bay. EMT -3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are $8.60\times 10^5\;g,\;2.19\times 10^2\;g\;and\;3.78\times 10^0\;g$ respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were $6.02\times10^3\;g/day,\;6.02\times10^2\;g/day\;and\;1.02\times10^1\;g/day$, respectively.

Recombinant fluorescent mammalian cells As Toxicity Biosensors

  • Kim, Eun-Jin;Lee, Yeong;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.208-211
    • /
    • 2000
  • The recombinant fluorescent chinese hamster ovary (CHO) cell line was developed and optimized through this study for biomonitoring system. This cell line, called KFC-A10, contains recombinant plasmid(pKCFG) constructed in this study for detecting toxic conditions (Mitomicyn C, EDCs, ${\gamma}-ray$, etc.). It is known that c-Fos is involved in proliferation and differentiation of the signal transduction and overexpression of this gene can lead cell to death under the toxic conditions including apoptosis status. Therefore, pKCFG which has the c-fosSRE::GFP is induced by toxic chemicals, especially DNA damage agents and apoptotic chemicals, and produces green fluorescence protein(GFP) under these toxic conditions. Through the characterization of KFC-A10 using fluorescent assays of GFP, it was shown that KFC-A10 cell line had a manifest GFP expression pattern due to various toxicants especially mitomycin C, ${\gamma}-ray$ and bisphenol A. Therefore this study proved the possibility of using GFP as a reporter for detecting various toxicants

  • PDF