• Title/Summary/Keyword: ECU control

Search Result 251, Processing Time 0.021 seconds

A Study on the Method of Air-Fuel Ratio by Immediate Control in SI Engine (SI 기관의 공연비 제어 방법에 관한 연구)

  • Lee, J.S.;Lee, J.S;Ha, J.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.252-258
    • /
    • 1998
  • In a SI engine, it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Generally the map data is used for the vehicles with a SI engine. For the precise control of air-fuel ratio, the real time control method is recommended rather than the control method using map data. In this paper, we developed real time control system using microprocessor and IBM-PC, and applied it to the commercial SI engine. We got good results for air-fuel ratio under the idle condition.

  • PDF

A study on the improvement of Auxiliary Power Unit auto-shutdown of T-50 series aircraft based on analysis of ECU response characteristics (ECU 응답특성 분석을 통한 T-50 계열 항공기 보조동력장치 자동 꺼짐 개선에 관한 연구)

  • Park, Sung-Jae;Yoo, In-Je;Choi, Su-Jin;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.640-646
    • /
    • 2017
  • A GEN TEST of the auxiliary power unit of a T-50 series aircraft is performed as part of the operational test of its emergency power system on the ground before flight. At this time, the auxiliary power unit should be automatically turned off via the response signal of the ECU when power is not normally supplied to the emergency power system. If the correct operation of the emergency power system cannot be confirmed on the ground, it is not possible to proceed with the flight. This kind of defect is a major factor causing the operation rate of the aircraft to be decreased. The defect code identified by the ECU was confirmed as a defect in the inverter. However, the same defect was found after replacing the inverter. This report presents an improved method of identifying the cause of the defect by analyzing the response characteristics of the ECU and emergency power system and allows the ECU to be recognized as the cause of the defect if the inverter does not generate a voltage within a certain time. Also, the application of the improved method confirmed that it can satisfy the output request time of the emergency power system and effectively prevent the auto-shutdown of the auxiliary power unit.

Sliding Mode Control of Electric Booster System (전동 부스터의 슬라이딩 모드 제어)

  • Yang, I-Jin;Choi, Kyu-Woong;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.519-525
    • /
    • 2012
  • Electric brake booster systems replace conventional pneumatic brake boosters with electric motors and rotary-todisplacement mechanisms including ECU (Electronic Control Unit). Electric booster brake systems require precise target pressure tracking and control robustness because vehicle brake systems operate properly given the large range of loading and temperature, actuator saturation, load-dependent friction. Also for the implement of imbedded control system, the controller should be selected considering the limited memory size and the cycle time problem of real brake ECU. In this study, based on these requirements, a sliding mode controller has been chosen and applied considering both model uncertainty and external disturbance. A mathematical model for the electric booster is derived and simulated. The developed sliding mode controller considering chattering problem has been compared with a conventional cascade PID controller. The effectiveness of the controller is demonstrated in some braking cases.

A Study of Vehicle's Sensor Signal Monitoring and Control Using Zigbee Wireless Communication and Web-based Embedded System (지그비 무선통신과 웹 기반의 임베디드 시스템을 이용한 자동차 센서신호 감시 및 제어에 관한 연구)

  • Yang, Seung-Hyun;Lee, Suk-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • In this paper, we constructed Embedded web-server to be monitored and controlled for intelligent vehicle on the base of embedded system and Zigbee wireless communication. By interfacing main controller and embedded system with ECU including every information of vehicle, it is possible to monitor the cruising information of vehicle, and sensor signal added to inside and outside of vehicle is transferred to embedded system through Zigbee communication. Web-server is constructed using embedded system, that's why the access to vehicle is possible using PC or mobile instrument, and the real-time check and control of vehicle is possible as well.

A Study on the design of ABS ECU for a commercial vehicle(BUS) and its control algorithm (상용차용 ABS의 ECU 설계 및 제어 알고리즘에 관한 연구)

  • Lee, Ki-Chang;Kim, Moon-Sup;Jeon, Jung-Woo;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.612-614
    • /
    • 2000
  • ABS(Anti-lock Braking System) is a device which prevents the lock-up of car wheels during emergency braking. It helps to maintain the steerability since the tire-road slip is controlled in an acceptable range. By maintaining the maximal frictional force during braking. ABS can reduce the braking distance. Recently, ABS is accepted as a standard equipment in vehicles, especially in commercial vehicles(bus and trucks). Commercial vehicles mostly use pneumatic pressure for braking. In this paper, ECU(Electronic Control Unit) for the anti-lock braking system of a commercial vehicle which is equipped with a full-air brake system and its control algorithms are presented.

  • PDF

ECU-In-the-Loop Simulation for ESC Performance Analysis on the Selection of In-vehicle Networks (차량 내 네트워크 선정에 따른 ESC 성능 분석을 위한 ECU-In-the-Loop 시뮬레이션)

  • Yang, Seung-Moon;Kim, Seong-Yeop;Ki, Young-Hun;Ahn, Hyun-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.87-96
    • /
    • 2013
  • This paper shows how the performance of an ESC(Electronic Stability Control) system can be affected by the selection of in-vehicle network protocols such as CAN or FlexRay. The vehicle control performance under ESC operation is analyzed by EILS(ECU-In-the-Loop Simulation). The experimental set-up for the EILS of the ESC system consists of two 32-bit microcontroller boards communicated with CAN or FlexRay protocols. A 7-DOF vehicle model and an ESC algorithm with 2-DOF reference vehicle model are implemented on each microcontroller respectively. It is shown by experimental results that the ESC system using the FlexRay protocol can achieve better performance than that using the CAN protocol for a fast and accurate lane changing.

Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems (자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF

Fault Localization Method by Utilizing Memory Update Information and Memory Partitioning based on Memory Map (메모리 맵 기반 메모리 영역 분할과 메모리 갱신 정보를 활용한 결함 후보 축소 기법)

  • Kim, Kwanhyo;Choi, Ki-Yong;Lee, Jung-Won
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.998-1007
    • /
    • 2016
  • In recent years, the cost of automotive ECU (Electronic Control Unit) has accounted for more than 30% of total car production cost. However, the complexity of testing and debugging an automotive ECU is increasing because automobile manufacturers outsource automotive ECU production. Therefore, a large amount of cost and time are spent to localize faults during testing an automotive ECU. In order to solve these problems, we propose a fault localization method in memory for developers who run the integration testing of automotive ECU. In this method, memory is partitioned by utilizing memory map, and fault-suspiciousness for each partition is calculated by utilizing memory update information. Then, the fault-suspicious region for partitions is decided based on calculated fault-suspiciousness. The preliminary result indicated that the proposed method reduced the fault-suspicious region to 15.01(%) of memory size.

An Implementation Method of HB-Family Light-weight Authentication for Device Authentication between ECU (ECU간 기기인증을 위한 HB-Family 경량인증기법의 적용 방법)

  • Kim, Tae Su;Kim, Hyoseung;Woo, Samuel;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.593-607
    • /
    • 2013
  • The In-Vehicle-Networking(IVN) of modern cars is constituted by an small electronic control device called ECU. In the past, there was no way to be able to access the IVN of a driving car. so IVN has been recognized as a closed environment so there is no need to exist authentication protocol between devices which are to configure the internal network and to communicate with other devices. However, constant improvements made it possible to access the IVN in many different ways as the communication technology evolves. This possibility created a need for device authentication in IVN. HB-Family are representative authentication schemes in RFID environment which has similar restrictions to IVN. In this paper, we propose an implementation method of HB-Family for device authentication between ECU considering ECU has low computing power and the message field of CAN protocol has restricted size of 8 bytes. In order to evaluate the efficiency and availability of the authentication schemes adopted our method, we have evaluated the performance based on DSP-28335 device. Further, it was possible to improve the efficiency rate of at lest 10%, up to 36%, and we then analyze this result in various aspects of the IVN.

Development of Hardware-in-the-Loop Simulator for Testing Embedded System of Automatic Transmission (자동변속기용 임베디드 시스템 성능 시험을 위한 Hardware-in-the Loop 시뮬레이터 구축)

  • Jang, In-Gyu;Seo, In-Keun;Jeon, Jae-Wook;Hwang, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 2008
  • Drivers are becoming more fatigued and uncomfortable with increase in traffic density, and this condition can lead to slower reaction time. Consequently, they may face the danger of traffic accidents due to their inability to cope with frequent gear shifting. To reduce this risk, some drivers prefer automatic transmission (AT) over manual transmission (MT). The AT offers more superior drivability and less shifting shock than the MT; therefore, the AT market share has been increasing. The AT is controlled by an electronic control unit (ECU), which provides better shifting performance. The transmission control unit (TCU) is a higher-value-added product, so the companies that have advanced technologies end to evade technology transfer. With more cars gradually using the ECU, the TCU is expected to be faster and more efficient for organic communication and arithmetic processing between the control systems than the l6-bit controller. In this paper, the model of an automatic transmission vehicle using MATLAB/Simulink is developed for the Hardware in-the-Loop (HIL) simulation with a 32-bit embedded system, and also the AT control logic for shifting is developed by using MATLAB/Simulink. The developed AT control logic, transformed automatically by real time workshop toolbox, is loaded to a 32-bit embedded system platform based on Freescale's MPC565. With both vehicle model and 32-bit embedded system platform, we make the HIL simulation system and HIL simulation of AT based on real time operating system (RTOS) is performed. According to the simulation results, the developed HIL simulator will be used for the performance test of embedded system for AT with low cost and effort.