• Title/Summary/Keyword: ECU (Engine Control Unit)

Search Result 43, Processing Time 0.027 seconds

Design and Application of Accelerated Run-in Test for ECU Quality Improvement (ECU 품질 개선을 위한 Accelerated Run-in Test 설계 및 효과고찰)

  • Cho, Hyogeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • Modern vehicle has a lot of ECU(Electronic Control Unit) products to control many parts such as engine, transmission, brake, body and so on. ECU quality is one of important factors related to vehicle quality and driver's safety. Based on Bath-tub curve which presents failure rate during product lifetime, we designed and applied Accelerated Run-in Test into manufacturing line by simulating stress amount to ECU and developing the required software and efficient test equipment for mass production. This test makes ECU products stressed through electrical and thermal stresses under excessive driving condition, which induce potential initial failure of components in the ECU during production. The outcome until these days proved that Acceleration Run-in Test have reduced initial failure rates and increased quality of ECU products in the field outstandingly.

Air-Fuel Ratio Control Characteristics of an LPG Engine at Idle (LPG 엔진의 공회전 영역에서 공연비 제어 특성)

  • 심한섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.30-35
    • /
    • 1999
  • Since LPG has a higher octane number and a lower maximum combustion temperature than gasoline it is getting more popular for reducing emissions from the vehicle This paper when an LPG engine works in the range of idle analyzed the operating range preciously an provides reducing method of emissions for the LPG engine. An electronic control unit(ECU) for the LPG engine using a feedback mixer is presented. The ECU is built by using a microcontroller MC68HC05. A PI-controller is imple-mented in the ECU in order to handle to handle Air/Fuel ration control. The experimental results exhibit that the required engine performance are satisfied at idle.

  • PDF

Precise Air-Fuel Ratio Control on Transient Conditions with the PC-ECU in SI Engine (PC-ECU를 이용한 SI 기관의 비정상상태 정밀공연비 제어)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.9-16
    • /
    • 2000
  • In a SI engine, three-way catalyst converter has the best efficiency when A/F ratio is near the stoichiometry. The feedback control using oxygen sensors in the commercial engine has limits caused by the system delays. So it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Precise A/F ratio control requires measurement of air amount with respect to the cylinder and injection fuel according to the air amount In this paper, we applied nonlinear fuel injection model and developed the algorithm of A/F ratio control. This algorithm includes the methods of measurement of transient air mass flowing into each cylinder, of calculation of injection pulse width for measured air mass, and the method of feedback and engine control by using lambda sensor. Also we developed control program for IBM-PC by using C++ Builder, and tested it in the commercial engine.

  • PDF

Distributed ECU System Design for High Speed and High Precision Control of a Marine Engine

  • Lee, Jong-Nyun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.534-538
    • /
    • 2010
  • Efficient control of a marine engine requires an engine control unit (ECU) system that handles fast and precise signal processes for in-coming and out-going signals from fast running engines. In order to handle these roles, the sequential control has been adapted in the ECU system in small and medium size ship engines, which has caused high production cost and complexity of the system. Hence, this paper is focused on developing an distributed ECU system for high speed and high precision control of a marine engine by efficiently combining a CPLD chip and a microprocessor. By sharing load at the MCU with the designed CPLD chip, we could achieve in driving a marine engine with high speed and precise control so that the ECU board has been simplified and its production cost has been reduced.

Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine (자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성)

  • Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

Electronic Control Unit Based Control of Racing Car to Enhance the Acceleration Performance (Racing Car ECU 의 제어에 의한 가속성능 향상에 관한 연구)

  • Hwang, Ui-Jun;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.58-63
    • /
    • 2020
  • The fuel injection amount and timing along with the ignition timing for the gasoline engine of a racing car were adjusted using an electronic control unit (ECU), and the engine performance was evaluated through an acceleration test. The fuel map for the fuel injection amount and ignition map for the ignition timing were derived. Using the transient throttle control, the air-fuel ratio could be maintained at a constant value even in the case of a sudden throttle operation. In the flat shift, ignition blocking was more effective than fuel blocking. In a 75 m acceleration test, the required duration without and with ECU control was 4.47 s and 3.99 s, respectively. Notably, the acceleration could be improved by approximately 10.7% when the ECU control was implemented.

An Experimental Study on the Safety Standard of Electronic Throttle Control System (전자식 가속제어장치 안전기준에 대한 실험적 고찰)

  • Yun, Kyungcheol;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Optimal engine control is needed to cope with the global environmental regulations that are globally enforced. For optimum engine control, the electronic throttle control system (ETCS) is a prerequisite. Automotive makers are having an effect on reducing emissions and improving fuel economy by applying ETCS which is designed to secure stability. The ETCS controls the output of the throttle valve by passing the output value of the accelerator position sensor (APS) to the engine control unit (ECU). In this study, the authors investigated the safety standards of domestic and overseas accelerator control system and tried to understand how the air flow control affects the engine output by replacing the throttle. The authors suggest an improvement proposal of safety standard based on the result of driving evaluation by various modes.

Charged Cable Model (CCM) ESD Damage to ECU (Charged Cable Model (CCM) 정전기 방전(ESD)에 의한 전자제어장치의 손상)

  • Ha, MyongSoo;Jung, JaeMin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.159-165
    • /
    • 2013
  • ESD damage by Charged Cable Model (CCM) is introduced. Due to its own impedance characteristic unlike Human Body Model (HBM) or Machine Model (MM) electric component can be destroyed even though it is located after typical protection circuit. Possible mechanism of ESD damage to automotive electric control unit (ECU) in vehicle environment by CCM discharge was investigated. Based on investigation, field-returned vehicle whose ECU is expected to be damaged by CCM discharge was tested to reproduce it and similar electric component destruction inside ECU was observed. Suggestions to reduce the possibility of ESD damage by CCM are introduced.

Development of Automatic Idle Stop Control System with Signals of ECU and TCU (ECU 및 TCU 신호를 이용한 자동차의 공회전 자동정지 제어 시스템 개발)

  • Kim Seong-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1601-1606
    • /
    • 2005
  • In this study, an automatic idle stop control system was developed, which automatically stops the idle state engine as it detects the stop state of the car for several seconds and restarts the stopped engine with the driver's electrical signal. It is composed of microprocessor and the related electronic circuits and communicates with ECU and TCU. With accurate and confirmed operating performance, the control system was equipped in the test car which was proceeded the ECE15+EUDC mode test. It is confirmed that the control system, ASG has much favourable effects on reducing the fuel consumption and harmful exhaust emissions.

A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells (차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정)

  • Cho, Seung Keun;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.