• Title/Summary/Keyword: ECOLOGICAL HEALTH

Search Result 734, Processing Time 0.037 seconds

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF

A Study on the Necessity of Vertical Garden in Public Places for Urban Environment Improvement (도시환경 개선을 위한 공공장소의 수직정원 필요성에 관한 연구)

  • Kim, Chul-soo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.75-81
    • /
    • 2021
  • (Research background and purpose) Urban development has also had a significant impact on the eco-friendly industry. In the public environment, citizens are stressed in many areas, which has really made them need a natural ecological environment. Therefore, it is necessary to improve the environment into an eco-friendly urban public facility that breathes the urban environment space inside the building with plants. To this end, we want to show that the urban environment can be improved through vertical gardens. And through this, we want to contribute to the popularization of vertical gardens. (Research Methodology) we will analyze the problems of the current public environment in the city and look at the supplementation around vertical gardens. (Result) A study of the public environment in the city found problems such as gloomy environment, poor use of space, dim color, and poor air quality, and wanted to create a vertical garden to provide a pleasant shelter. These vertical gardens have influenced urban public places with improved aesthetics, increased social value, insulation and soundproofing effects of buildings, reduced urban heat island effects, and increased urban green appearance. (Conclusion)This study uses vertical gardens in public spaces to design public spaces that are more comfortable and share mental and physical health together.

Using Service Design Tools in Community Nutrition Research: A Case Study in Developing Dietary Guidelines for Young Adults (서비스 디자인 도구의 지역사회영양학 분야 활용: 청년 식생활 가이드 개발 사례)

  • Jo, Eunbin;Shim, Jae Eun;Ryou, Hyun Joo;Kim, Kirang;Song, Su Jin;Kim, Hyun Ja;Ahn, Jeong Sun;Kwon, Kwang-il;Lee, Hye Young;Park, Sohyun
    • Korean Journal of Community Nutrition
    • /
    • v.27 no.3
    • /
    • pp.177-191
    • /
    • 2022
  • Objectives: Recent epidemiological data reported that young adults in their 20 ~ 30s are a vulnerable population with unhealthy dietary practices and a few signs of deteriorated health indicators. However, there are no dietary guidelines that are specifically developed for the young adult population. This study introduces some data collection tools that are mostly used in the service design field, and demonstrates how these tools can be used in nutrition research for developing dietary guidelines for specific target groups. Methods: To understand the context of food choices among young people, 39 people were enrolled to complete a probes booklet. Thematic analysis and word cloud were performed to capture the main themes from the probes and a persona was developed based on the findings. Results: Data from the probes enabled us to grasp the various contextual meanings of eating practices among young people. Most participants understand what a healthy diet is and often have a willingness to practice it. However, there were very few participants who were following the practices. We created four types of persona for developing dietary guidelines: healthy eating, emotional eating, convenient eating, and trendy eating. Conclusions: Probes and persona were used in order to understand the lives of young adults and develop targeted messages. We hope that this introduction will be helpful to researchers who are looking for new ways of understanding their target population in the field of community nutrition.

Two-dimensional Spatial Distribution Analysis Using Water Quality Measurement Results at River Junctions (하천 합류부에서의 수질계측결과를 활용한 2차원 공간분포 해석)

  • Lee, Chang Hyun;Park, Jae Gon;Kim, Kyung Dong;Ryu, Si Wan;Kim, Dong Su;Kim, Young Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • High-resolution data are needed to understand water body mixing patterns at river junctions. In particular, in river analysis, hydrological and water quality characteristics are used as basic data for aquatic ecological health, so observation through continuous monitoring is necessary. In addition, since measurement is carried out through a one-dimensional and fixed measurement method in existing monitoring systems, a hydrological and water quality characteristics investigation of an entire river, except for in the immediate vicinity of the measurement point, is not undertaken. In order to obtain high-resolution measurement data, a measurer has to consider multiple factors, and the area or time that can be measured is limited. Although the resolution might be lowered, an appropriate interpolation method must be selected in order to acquire a wide range of data. Therefore, in this study, a high-elevation measurement method at a river junction was introduced, and the interpolation method according to the measurement results was compared. The overall hydraulic and water quality information of the river was indicated through the visualization of the prediction and interpolation method in the low-resolution measurement result. By comparing each interpolation method, Inverse Distance Weighting, Natural Neighbor, and Kriging techniques were applied in river mapping to improve the precision of river mapping through visualized data and quantitative evaluation. It is thought that this study will offer a new method for measuring rivers through spatial interpolation.

Analysis of effects of drought on water quality using HSPF and QUAL-MEV (HSPF 및 QUAL-MEV를 이용한 가뭄이 수질에 미치는 영향 분석)

  • Lee, Sangung;Jo, Bugeon;Kim, Young Do;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.393-402
    • /
    • 2023
  • Drought, which has been increasing in frequency and magnitude due to recent abnormal weather events, poses severe challenges in various sectors. To address this issue, it is important to develop technologies for drought monitoring, forecasting, and response in order to implement effective measures and safeguard the ecological health of aquatic systems during water scarcity caused by drought. This study aimed to predict water quality fluctuations during drought periods by integrating the watershed model HSPF and the water quality model QUAL-MEV. The researchers examined the SPI and RCP 4.5 scenarios, and analyzed water quality changes based on flow rates by simulating them using the HSPF and QUAL-MEV models. The study found a strong correlation between water flow and water quality during the low flow. However, the relationship between precipitation and water quality was deemed insignificant. Moreover, the flow rate and SPI6 exhibited different trends. It was observed that the relationship with the mid- to long-term drought index was not significant when predicting changes in water quality influenced by drought. Therefore, to accurately assess the impact of drought on water quality, it is necessary to employ a short-term drought index and develop an evaluation method that considers fluctuations in flow.

Occupancy Probability Estimation of Endangered Species Clithon retropictus (멸종위기종인 기수갈고둥의 잠재적 서식지 예측을 위한 점유 확률 추정)

  • Park, Woong-Bae;Lim, Sung-Ho;Won, Doo-Hee;Lee, Kyung-Lak;Hong, Cheol;Do, Yuno
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.76-83
    • /
    • 2022
  • We attempted to estimate potential habitats of Clithon retropictus and to determine the community structure of benthic macroinvertebrates by presence of C. retropictus. 2016 to 2018 database of "Survey and Assessment of Estuary Ecosystem Health" by the Ministry of Environment were used to identify the distribution site of C. retropictus. The occupancy model was applied to estimate the potential habitat of C. retropictus. Four diversity indices were used to confirm the community structure of benthic macroinvertebrates. C. retropictus was found in the southern coast area and part of the east coast, and this pattern was consistent with previous studies. Additionally, the occupancy model predicted that a potential habitat of C. retropictus could appear in the west coast area. The community structure of benthic macroinvertebrates was relatively high at the site with C. retropictus than the site without C. retropictus. Therefore, the occupancy model can be considered when conserving C. retropictus inhabiting a limited area. Additionally, C. retropictus can be used to the indicator species that can represent the brackish water environment.

Applicability Evaluation of Deep Learning-Based Object Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8 and RT-DETR (해안쓰레기 탐지 및 모니터링에 대한 딥러닝 기반 객체 탐지 기술의 적용성 평가: YOLOv8과 RT-DETR을 중심으로)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Seungyeol Oh;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1195-1210
    • /
    • 2023
  • Coastal debris has emerged as a salient issue due to its adverse effects on coastal aesthetics, ecological systems, and human health. In pursuit of effective countermeasures, the present study delineated the construction of a specialized image dataset for coastal debris detection and embarked on a comparative analysis between two paramount real-time object detection algorithms, YOLOv8 and RT-DETR. Rigorous assessments of robustness under multifarious conditions were instituted, subjecting the models to assorted distortion paradigms. YOLOv8 manifested a detection accuracy with a mean Average Precision (mAP) value ranging from 0.927 to 0.945 and an operational speed between 65 and 135 Frames Per Second (FPS). Conversely, RT-DETR yielded an mAP value bracket of 0.917 to 0.918 with a detection velocity spanning 40 to 53 FPS. While RT-DETR exhibited enhanced robustness against color distortions, YOLOv8 surpassed resilience under other evaluative criteria. The implications derived from this investigation are poised to furnish pivotal directives for algorithmic selection in the practical deployment of marine debris monitoring systems.

A study on TOC monitoring and spatial distribution analysis using a spectrometer in rivers (하천에서의 분광측정기를 이용한 TOC 모니터링 및 공간분포 분석 연구)

  • Yoon, Soo Bin;Lee, Chang Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.815-822
    • /
    • 2023
  • Organic pollution is one of the most common forms of water contamination. Under the Water Quality Conservation Act, indicators for measuring organic substances include BOD, COD, and TOC. Analysis of BOD and COD is labor-intensive, and in the case of organic substances where biological decomposition is not feasible or toxic substances are present, the accuracy is often low. Therefore, the Ministry of Environment is shifting towards TOC-centric management. With advancements in sensor technology today, various parameters can be monitored using sensors. In this study, digital monitoring of river TOC using a spectrophotometer called Spectro::lyser V3 was conducted. Initially, experiments were carried out at the Andong River Experiment Center to assess the applicability of the measurement equipment. Subsequently, data collected at the confluence of the Nakdong River was analyzed for the spatial distribution of TOC using the Kriging technique. This research proposes the utilization of sensors for river TOC monitoring and spatial distribution analysis. Real-time monitoring of changes in river TOC concentration can serve as fundamental data for pollution monitoring and response. Sensor-based river monitoring offers advantages in terms of temporal resolution and real-time data acquisition. When various spatial information interpretation methods are applied, it is expected to contribute to diverse studies such as aquatic ecological health, river water source selection, and stratification analysis in the future.

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.

Trend of Home Economics Curriculum Research by the Curriculum Period and Journals (교육과정 시기 및 학술지별 가정과교육과정 연구의 동향)

  • Kwon, Boeun;Bae, Jinhee;Choi, Kyeongeun;Song, Yeo Min;Yu, Nan Sook;Baek, Hee Yeon
    • Journal of Korean Home Economics Education Association
    • /
    • v.36 no.2
    • /
    • pp.33-50
    • /
    • 2024
  • This study examined the trends in home economics education research across different curriculum periods and journals. A total of 374 papers related to the 2009, 2015, and 2022 revised curricula were selected and analyzed using network analysis from four journals. First, research trends were analyzed by curriculum period. Keyword frequency analysis revealed that articles on the 2009 and 2015 revised curricula primarily focused on analyzing the curriculum to develop textbooks or programs. In contrast, papers on the 2022 revised curriculum explored broader directions. Topic modeling results highlighted the prominent topics for each period: 'environmental education' in the 2009 revised curriculum, 'safety and health education' in the 2015 revised curriculum, and 'ecological transition' in the 2022 revised curriculum. Second, research trends were analyzed by journal. Keyword frequency analysis by journal exposed specific research tendencies. For example, in the Journal of Home Economics Research, 'perceptions of practical classes' and 'analysis of safety textbooks' were major topics for the 2009 revised curriculum, while 'teaching and learning plans for competence development' dominated research on the 2015 revised curriculum. This study demonstrates that the concepts and goals emphasized in curriculum revisions are reflected in the corresponding research.