• 제목/요약/키워드: ECG signal Processing

검색결과 158건 처리시간 0.025초

Nonlinear Quality Indices Based on a Novel Lempel-Ziv Complexity for Assessing Quality of Multi-Lead ECGs Collected in Real Time

  • Zhang, Yatao;Ma, Zhenguo;Dong, Wentao
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.508-521
    • /
    • 2020
  • We compared a novel encoding Lempel-Ziv complexity (ELZC) with three common complexity algorithms i.e., approximate entropy (ApEn), sample entropy (SampEn), and classic Lempel-Ziv complexity (CLZC) so as to determine a satisfied complexity and its corresponding quality indices for assessing quality of multi-lead electrocardiogram (ECG). First, we calculated the aforementioned algorithms on six artificial time series in order to compare their performance in terms of discerning randomness and the inherent irregularity within time series. Then, for analyzing sensitivity of the algorithms to content level of different noises within the ECG, we investigated their change trend in five artificial synthetic noisy ECGs containing different noises at several signal noise ratios. Finally, three quality indices based on the ELZC of the multi-lead ECG were proposed to assess the quality of 862 real 12-lead ECGs from the MIT databases. The results showed the ELZC could discern randomness and the inherent irregularity within six artificial time series, and also reflect content level of different noises within five artificial synthetic ECGs. The results indicated the AUCs of three quality indices of the ELZC had statistical significance (>0.500). The ELZC and its corresponding three indices were more suitable for multi-lead ECG quality assessment than the other three algorithms.

다양한 외부 자극에 따른 생체 정보 변화와 감정 분류 연구 동향 (Research trends on Biometric information change and emotion classification in relation to various external stimulus)

  • 김기환;이훈재;이영실;김태용
    • 융합신호처리학회논문지
    • /
    • 제20권1호
    • /
    • pp.24-30
    • /
    • 2019
  • 현대인들은 불안정한 소득과 타인과의 갈등 등 다양한 요소로 인하여 정신건강 관리가 필요하다는 주장이 있다. 최근에는 웨어러블 장비에 심전도(Electrocardiogram, ECG)를 측정할 수 있는 장비가 보급되고 있으며, 해외의 경우 의학적 보조수단으로 활용된 사례를 볼 수 있다[14]. 이와 같은 기능을 활용하는 것으로 대표적인 감정(기쁨, 슬픔, 분노 등)을 객관적인 수치로 구별하는 연구들이 진행되고 있다. 그러나 대부분의 연구는 제한적인 환경에서 복합적인 생체 신호를 수집하는 것으로 정확도를 높이고 있다. 따라서 각각의 자극에 대한 생체 정보의 변화와 판별에 가장 많은 영향을 미친 요소를 살펴본다.

오류 역전파 기반 ECG 특징을 이용한 심방조기수축(PAC) 분류 (Classification of Premature Atrial Contraction using Feature of ECG Signal based on Error Back-Propagation)

  • 전은광;남윤영;이화민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.669-672
    • /
    • 2017
  • 최근 한국인의 주요 사망원인 중 하나로 부정맥이 부각되고 있다. 심방조기수축(PAC:Premature Atrial Contraction)은 심방이 동방결절의 명령이 있기 전에 수축해 버리는 것이다. 심방조기수축은 일시적으로 유발하였다 사라지곤 할 수 있기 때문에 심한 증상이 없다면 생명에 위협을 가하진 않지만 반대의 경우에는 위험할 수 있다. 따라서 비정상적인 심장 박동이 발생하면 이를 검출하여 조기에 부정맥을 진단할 수 있는 방법이 필요하다. 이를 위해 대상의 ECG 신호로부터 QRS패턴에 해당하는 특징들을 추출하였고 특징들을 이용하여 심방조기수축 파형을 분류한다. 오류 역전파 기반으로 특징들을 훈련하며 가중치와 바이어스값을 구한뒤 이를 이용하여 정상파형과 심방조기수축 파형을 분류한다.

차감 동작 기법 기반의 효율적인 R파 검출 (Efficient R Wave Detection based on Subtractive Operation Method)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.945-952
    • /
    • 2013
  • QRS 영역 중 R파는 ECG 신호 중 가장 큰 대표 신호라 할 수 있으며, 이 점을 기준으로 다양한 특징점을 검출하기 때문에 R파의 검출성능을 높이기 위해 많은 노력을 기울여 왔다. 하지만 R파 검출은 여러 종류의 잡음성분들로 인하여 이를 분석하는데 어려움을 준다. 또한 QRS 영역의 진폭과 유사한 T파나 P파를 R파로 오인함으로써 검출의 어려움이 발생한다. ECG 신호처리는 하드웨어 및 소프트웨어 자원에 대한 효율성을 고려해야 하며, 소형화 및 저 전력을 위해 단순해야 한다. 즉, 최소한의 연산량으로 정확한 R파를 검출함으로써 다양한 부정맥을 분류할 수 있는 적합한 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 차감 동작 기법(Subtractive Operation Method, 이하 SOM) 기반의 심전도 신호의 R파 검출 방법을 제안한다. 이를 위해 형태 연산을 통한 전처리 과정과 경험적 문턱값과 차감신호를 통해 R파를 검출하였으며, 검출의 효율성을 위하여 RR 간격을 이용한 동적 역탐색 기법을 적용하였다. 제안한 알고리즘의 R파 검출 성능을 평가하기 위해서 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, R파는 평균 99.41%의 검출결과가 나타났다.

용량성 결합 능동 전극의 공통 모드 구동 차폐 (A Study on comnon-mode-driven shield for capacitive coupling active electrode)

  • 임용규
    • 융합신호처리학회논문지
    • /
    • 제13권4호
    • /
    • pp.201-206
    • /
    • 2012
  • 간접접촉 심전도 측정(Indirect-Contact ECG)은 일상생활에서의 무구속 무자각 측정에 적합한 심전도 측정 방법이다. 본 연구는, 간접접촉 심전도 측정에서 크게 관측되는 60Hz 전원선 잡음을 줄이기 위한 새로운 방법으로, 공통모드 구동 차폐 방식을 제안하였다. 공통 모드 구동 차폐 방식은, 간접 접촉 심전도에서 사용되는 용량성 결합 능동 전극(Capacitive coupling active electrode)을 둘러싼 전기적 차폐(electric shield)의 전압을 공통 모드 전압과 동일하게 유지하는 방법이다. 이 방법은 공통모드 전압의 크기는 그대로 유지하지만, 의복 임피던스 차에 의한 공통모드 전압의 차동 모드 전환에 의한 잡음은 효과적으로 줄일 수 있다. 따라서 두 전극 사이의 의복의 임피던스 차이가 커서 공통 모드 전원 잡음이 심각한 간접 접촉 심전도 측정에서, 효과적으로 공통 모드 잡음을 줄일 수 있다. 실제 간접 접촉 심전도 측정에 제안된 방법을 적용한 결과로 이론적 예상보다는 60Hz 잡음 감소비가 적었지만, 60Hz 잡음이 크게 줄어드는 것을 확인할 수 있었다. 특히 의복 임피던스 차가 크게 발생하는 경우, 예상대로 잡음 감소비가 커짐을 볼 수 있었다. 제안된 방법은 접지 특성이 좋지 않은 측정 조건에서 전원 잡음을 줄이는데 유용할 것으로 기대된다.

Optimization of 1D CNN Model Factors for ECG Signal Classification

  • Lee, Hyun-Ji;Kang, Hyeon-Ah;Lee, Seung-Hyun;Lee, Chang-Hyun;Park, Seung-Bo
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.29-36
    • /
    • 2021
  • 본 논문에서는 딥러닝 모델을 이용하여 모바일 기기의 심전도 신호 측정 데이터를 분류한다. 비정상 심장박동을 높은 정확도로 분류하기 위해 딥러닝 모델의 구성 요소 세 가지를 선정하고 요소의 조건 변화에 따른 분류 정확도를 비교한다. 심전도 신호 데이터의 특징을 스스로 추출할 수 있는 CNN 모델을 적용하고 모델을 구성하는 모델의 깊이, 최적화 방법, 활성화 함수의 조건을 변경하여 총 48개의 조합의 성능을 비교한다. 가장 높은 정확도를 보이는 조건의 조합을 도출한 결과 컨볼루션 레이어 19개, 최적화 방법 SGD, 활성화 함수 Mish를 적용하였을 때 정확도 97.88%로 모든 조합 중 가장 높은 분류 정확도를 얻었다. 이 실험에서 CNN을 활용한 1-채널 심전도 신호의 특징 추출과 비정상 박동 검출의 적합성을 확인하였다.

다중레이트 필터링 기법을 이용한 맥파전달시간 추정 (Estimation of PTT (Pulse Transit Time) by Multirate Filtering Analysis)

  • 김현태;김정환;김경섭;이재호;이정환
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.1020-1026
    • /
    • 2013
  • Multirate filtering process on the biological signals like Electrocardiogram (ECG) and Photoplethysmogram (PPG) can be defined as the digital signal processing algorithm in which the sampling rate varies to omit or interpolate the intermediate values between the sampled data. With this aim, we suggest a new multirate filtering algorithm by deleting the extraneous data to eliminate the unwanted degradations such as granular noise due to the usage of high sampling frequency and simultaneously to detect the fiducial features of ECG and PPG with reducing the complexity of resolving fiducial points such as R-peak, Pulse peak and Pulse Transit Time (PTT). After the experimental simulations performed, we can conclude the fact that we can detect the fiducial features of ECG and PPG signal in terms of R-peak, Pulse peak and PTT without the loss of accuracy even if we do not maintain the original sampling frequency.

심전도 신호의 리듬 특징을 이용한 부정맥 검출 (Arrhythmia Detection Using Rhythm Features of ECG Signal)

  • 김성완
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.131-139
    • /
    • 2013
  • 본 논문에서는 먼저 심전도 진단을 위한 처리 과정별 관련 연구내용을 살펴본 후 심전도 신호의 리듬 특징을 이용하여 부정맥을 검출 및 분류하는 방법을 제안한다. 특징 추출에서는 리듬 구간에 대하여 동일성 및 규칙성 등의 리듬 및 심박 분포에 관련되는 특징을 추출하게 되며, 리듬 분류에서는 리듬 구간의 특징에 대하여 미리 구축된 규칙 베이스를 이용하여 리듬 유형을 분류하게 된다. MIT-BIH 부정맥 데이터베이스의 모든 리듬 유형에 대한 실험을 통하여 정상 리듬 규칙만으로도 100% 부정맥 검출 성능을 보였으며, 부정맥 리듬 규칙으로는 유형 분류 적용 가능성을 확인하였다.

이미지 타입의 ECG 데이터를 사용한 CNN 모델 기반 부정맥 분류 (CNN Model-based Arrhythmia Classification using Image-typed ECG Data)

  • 방연석;장명수;홍유식;이상석;유준상;이우범
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.205-212
    • /
    • 2023
  • 심장 질환 가운데에서 부정맥은 방치할 경우에 뇌졸중, 심장 마비, 심부전과 같은 심각한 합병증이 발생할 수 있기 때문에 지속적이고 정확한 심전도 관리에 의한 건강 상태의 확인은 임상적 치료에 매우 중요한 요소이다. 그러나, 심전도(Electrocardiogram; ECG) 데이터의 정확한 해석은 전적으로 의료 전문가에 의존하기 때문에 부가적인 시간과 비용을 요구한다. 따라서 본 논문에서는 라이프로그 기반의 비정상적인 맥파 파형의 분석을 통한 의료 플랫폼 개발을 목적으로 부정맥 인식 모듈을 제안한다. 제안하는 방법은 ECG 데이터를 시계열 데이터가 아닌 이미지 형식으로 처리하여 시각적 패턴 인식 기술을 적용한 후, CNN 모델을 이용하여 부정맥을 탐지하는 방법을 제안한다. 본 논문에서 제안한 ECG 데이터의 이미지 타입 변환에 의한 CNN 모델의 부정맥 분류의 유효성 검증하기 위해 MIT-BIH 부정맥 데이터셋을 사용한 결과, 97%의 정확도를 보였다.

태아 ECG 추출 기능을 가지는 모바일 심전도 측정 시스템 설계 (Mobile ECG Measurement System Design with Fetal ECG Extraction Capability)

  • 최철형;김영필;김시경;유정봉;서봉균
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.431-438
    • /
    • 2017
  • In this paper, the abdomen ECG(AECG) is employed to measure the mother's ECG instead of the conventioanl thoracic ECG measurement. The fetus ECG signal can be extracted from the AECG using an algorithm that utilizes the mobile fetal ECG measurement platform, which is based on the BLE (Bluetooth Low Energy). The algorithm has been implemented by using a replacement processor processed directly from the platform BLE instead of the large statistical data processing required in the ICA(Independent component analysis). The proposed algorithm can be implemented on a mobile BLE wireless ECG system hardware platform to process the maternal ECG. Wireless technology can realize a compact, low-power radio system for short distance communication and the IOT(Intenet of Things) enables the transmission of real-time ECG data. It was also implemented in the form of a compact module in order for mothers to be able to download and store the collected ECG data without having to interrupt or move the logger, and later link the module to a computer for downloading and analyzing the data. A mobile ECG measurement prototype is manufactured and tested to measure the FECG for pregnant women. The experimental results verify a real-time FECG extraction capability for the proposed system. In this paper, we propose an ECG measurement system that shows approximately 91.65% similarity to the MIT database and the conventional algorithm and SNR performance about 10% better.