This paper suggests several simple and efficient algorithms for detecting the ECG Signal by Microcomputer's software. The ECG signal detection was performed with the Linear Approximation and the feature extraction. The linear transformation approximates a given waveform by a piecewise-linear function with a preset upper bound on the absolute error between the functional values of the original function and the approximation. And the feature extraction from ECG signal, the features are different wave amplitudes, durations and interwave intervals, used the slope, the amplitude and time-Duration of ECG Sinal.
The ECG signal is very important information for diagnosis of patient and a cardiac disorder. It is hard to remove the noise because that is mixed with a lot of noise, and the error of the filtering will distort the ECG signal. The existing method for the filtering of the ECG signal has structure that has many steps for filtering, so that structure is complex and the processing speed is slow. For the improvement of that problem, we propose the method of filtering that has simple structure using the RBF neural networks and have good results.
In this study, Independent Component Analysis (ICA) algorithms are suggested to extract the original ECG part from the mixed signal contaminated with the unwanted frequency components and especially 60Hz power line disturbances. With this aim, we implement a novel method to suppress the baseline-wandering disturbances and power line artefacts contained in patch-electrodes sensory ECG data by separating the unmixed signal with finding the optimal weight W based on Kurtosis value. With applying brutal force and gradient ascent searching algorithm to find W, we can conclude that the unwanted frequency components especially in the ambulatory ECG data can be eliminated by Independent Component Analysis.
부정맥 분류를 위한 기존 연구들은 개인별 ECG신호의 차이는 고려하지 않고 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 또한 기존의 방법들은 각 ECG 특징점의 정확한 측정을 필요로 하며, 연산이 매우 복잡하다. 복잡도를 줄이기 위한 여러 가지 방법들이 제안되었지만, 그에 따른 분류의 정확도가 떨어지는 문제점이 있었다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 다양한 ECG 신호의 패턴에 따라 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고 부정맥을 정확하게 분류 할 수 있는 방법이 필요하다. 본 연구에서는 대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 QRS 특징점을 통해 대상 유형별 ECG 신호의 QRS 패턴을 정의하였다. 이후 패턴분류에 따른 오류를 검출 및 수정하고, 중복된 QRS 패턴을 별도의 부정맥으로 분류하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 43개의 레코드를 대상으로 PVC, PAC, Normal, LBBB, RBBB, Paced beat의 검출율을 비교하였다. 실험결과 Normal, PVC, PAC, LBBB, RBBB, Paced beat의 검출율은 각각 99.98, 97.22 95.14, 91.47, 94.85, 97.48%의 우수한 검출율을 나타내었다.
본 논문에서는 심장의 전기활성도를 반영하는 ECG 신호 중 일부를 명세한다. 꾸준히 축적되었고 통용되는 ECG 신호의 비정형 명세를 정형 명세로 바꾸는 과정에서 선형 시제 논리보다 시간을 다루는 명세 및 양적 평가에 유리한 신호 시제 논리(Signal Temporal Logic)를 사용한다. ECG 신호를 감지했다는 가정하에 특징점을 추상화하여 신호를 맹세했고, 양적으로 평가해주는 모델 기발 실시간 ECG 모니터링 시스템의 신속한 개발 필요성을 제시한다.
심전도는 파형의 크기가 수 ㎷정도로 아주 작은 생체신호로서, 계측할 때 발생되는 잡음으로 인하여 해석하는데 어려움을 준다[1]. 깨끗한 파형을 얻기 위해서는 심전도 신호에 포함되어 있는 전원 잡음, 기저선 변동, 근 잡음을 제거해야 된다. 심전계에서 심전도 신호를 기록하는데 있어서 가장 큰 문제를 야기하는 부분이 기저선 변동인데 전극을 부착한 부위의 근육수축과 호흡의 리듬에 따라서 발생하게 된다. 그러한 기저선은 상하로 심하게 불규칙한 변동을 하면서 흔들리게 되어 심전도 신호를 진단하는데 어려움이 있으므로 기저선 변동을 제거하는 부분이 매우 중요하다. 본 연구에서는 실시간으로 신호처리 할 수 있는 디지털 필터를 구현함으로써 기저선 변동을 제거하는 시스템을 설계하여 환자의 심장질환을 분석하는데 응용할 수 있도록 하였다.
This paper proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex. the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to set of three states pulse-cord train relative to the original ECG signal. The pulse-cord train has the advantage of easy implementation in digital hardware circuits to achive automated ECG diagnosis. The algorithm performs very well feature extraction in arrythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contration) detection has a at least 90 percent sensityvity for arrythmia data.
Whether a person is feeling sleepy or reasonably awake is important safety information in many areas, such as humans operating in traffic or in heavy industry. The changes of body signals have been mostly researched by looking at electroencephalogram(EEG) signals but more and more other medical signals are being examined. In our study, an electrocardiogram(ECG) signal is measured at a sampling rate of 100 Hz and used to try to distinguish the possible differences in signal between the two states: awake and drowsy. Practical tests are conducted using a wireless sensor node connected to a wearable ECG sensor, and an ECG signal is transmitted wirelessly to a base station connected to a server PC. Through the QRS complex in the ECG analysis it is possible to obtain much information that is helpful for diagnosing different types of cardiovascular disease. A program is made with MATLAB for digital signal filtering and graphing as well as recognizing the parts of the QRS complex within the signal. Drowsiness detection is performed by evaluating the R peaks, R-R interval, interval between R and S peaks and the duration of the QRS complex..
The purpose of this paper is to recognize the feature points of ECG and human pulse -which signal shows the electric and physical characteristics of heart respectively- using wavelet transform. Wavelet transform is proper method to analyze a signal in time-frequency domain. In the process of wavelet decomposition and reconstruction of ECG and human pulse signal, we removed the noises of signal and recognized the feature points of signal using some of decomposed component of signal. We obtained the result of recognition rate that is estimated about 95.45$\%$ in case of QRS complex, 98.08$\%$ in case of S point and P point and 92.81$\%$ in case of C point. And we computed diagnosis parameters such as RRI, U-time and E-time.
In this paper, we implement a portable bioelectric signal measurement system for the safety of industrial workers. The developed system consists of two parts: the one is boielectric signal measurement unit and the other is signal analyzer system with PDA. The former includes signal processing part, A/D convertor, and 8051 based microprocessor, the latter includes software for signal analysis and display. The developed system detects industrial worker's ECG and displays and stores it to PDA. The ECG data in PDA can be transmitted to PC located in a distance, allowing a doctor to review the ECG and make a treatment decision. A doctor analyzes the ECG data and gives medical treatment to industrial worker.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.