• Title/Summary/Keyword: ECG 패턴

Search Result 63, Processing Time 0.03 seconds

Peak Detection using Syntactic Pattern Recognition in the ECG signal (Syntactic 패턴인식에 의한 심전도 피이크 검출에 관한 연구)

  • Shin, Kun-Soo;Kim, Yong-Man;Yoon, Hyung-Ro;Lee, Ung-Ku;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.19-22
    • /
    • 1989
  • This paper represents a syntactic peak detection algorithm which detects peaks in the ECG signal. In the algorithm, the input waveform is linearly approximated by "split-and-merge" method, and then each line segment is symbolized with primitive set. The peeks in the symbolized input waveform are recognized by the finite-state automata, which the deterministic finite-state language is parsed by. This proposed algorithm correctly detects peaks in a normal ECG signal as well as in the abnormal ECG signal such as tachycardia and the contaminated signal with noise.

  • PDF

Development of Wireless ECG Clothing for Dogs with Improved Signal Detection (신호 감지성이 향상된 반려견용 무선 심전도 측정 의복 개발)

  • Kim, Soyoung;Lee, Okkyung;Kwon, Eunsun;Lee, Yejin;Min, Seungnam;Lee, Heeran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.760-771
    • /
    • 2022
  • This study sought to develop clothing for a companion animal that can provide stable ECG measurements. A pattern for the smart clothing of a companion dog was manufactured using the replica method to select a location and method that best suited the stable measurement of ECG and improved the clothing's fitness. The smart clothing was developed as the following three types: strap type, top type, and combined top and vest type with a detachable wireless ECG monitor. The detection abilities of these were observed using the PQRST rate taken after ECG measurements while the three companion dogs were tested while resting and moving. The results revealed that apart from using an electrode, applying a gel pad is the most effective way to achieve stable ECG measurements, and the central chest region is more reliable than the left armpit for providing steady readings. The combined top and vest type showed the highest average ECG PQRST detection number, meaning that the ECG signal measurement was steady. These results may contribute to the measurement of ECG in smartwear for U-Healthcare to measure other biometric data of a companion dog.

Development of Chair Backrest for Non-intrusive Simultaneous Measurement of ECG and BCG (심전도와 심탄도의 무구속적 동시 측정을 위한 의자 등받이 개발)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.104-109
    • /
    • 2018
  • A non-intrusive ECG and BCG measurement system is introduced. The system is built on a auxiliary backrest of a chair. The developed system is aimed to non-intrusive assessment of cardiovascular dynamic indices such as pulse arrival time(PAT) and pre-ejection period (PEP). In the system, capacitive active electrodes and capacitive grounding were used for the non-intrusive indirect-contact ECG measurement, and EMFi pressure sensor was used for the non-intrusive BCG measurement. The capacitive active electrodes and the EMFi sensor were attached on the backrest. Using the system, ECG and BCG were successfully acquired. The measured BCG showed peaks that following ECG R peaks. It was shown that the time interval between Q wave in ECG and first peak in BCG correlates Pre-ejection period measured by impedance-cardiogram. The results showed that the introduced system can be used for the non-intrusive various cardiovascular information including ECG, PAT, PEP.

Design of ECG Pattern Classification System Using Fuzzy-Neural Network (퍼지-뉴럴 네트워크를 이용한 심전도 패턴 분류시스템 설계)

  • 김민수;이승로;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.273-276
    • /
    • 2002
  • This paper has design of ECG pattern classification system using decision of fuzzy IF-THEN rules and neural network. each fuzzy IF-THEN rule in our classification system has antecedent lingustic values and a single consequent class. we use a fuzzy reasoning method based on a single winner rule in the classification phase. this paper in, the MIT/BIH arrhythmia database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, we can effectively pattern classification by application of learned from neural networks.

  • PDF

Prediction of Transient Ischemia Using ECG Signals (심전도 신호를 이용한 일시적 허혈 예측)

  • Han-Go Choi;Roger G. Mark
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.190-197
    • /
    • 2004
  • This paper presents automated prediction of transient ischemic episodes using neural networks(NN) based pattern matching method. The learning algorithm used to train the multilayer networks is a modified backpropagation algorithm. The algorithm updates parameters of nonlinear function in a neuron as well as connecting weights between neurons to improve learning speed. The performance of the method was evaluated using ECG signals of the MIT/BIH long-term database. Experimental results for 15 records(237 ischemic episodes) show that the average sensitivity and specificity of ischemic episode prediction are 85.71% and 71.11%, respectively. It is also found that the proposed method predicts an average of 45.53[sec] ahead real ischemia. These results indicate that the NN approach as the pattern matching classifier can be a useful tool for the prediction of transient ischemic episodes.

  • PDF

Classification of Premature Atrial Contraction using Feature of ECG Signal based on Error Back-Propagation (오류 역전파 기반 ECG 특징을 이용한 심방조기수축(PAC) 분류)

  • Jeon, EunKwang;Nam, Yunyoung;Lee, Hwa-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.669-672
    • /
    • 2017
  • 최근 한국인의 주요 사망원인 중 하나로 부정맥이 부각되고 있다. 심방조기수축(PAC:Premature Atrial Contraction)은 심방이 동방결절의 명령이 있기 전에 수축해 버리는 것이다. 심방조기수축은 일시적으로 유발하였다 사라지곤 할 수 있기 때문에 심한 증상이 없다면 생명에 위협을 가하진 않지만 반대의 경우에는 위험할 수 있다. 따라서 비정상적인 심장 박동이 발생하면 이를 검출하여 조기에 부정맥을 진단할 수 있는 방법이 필요하다. 이를 위해 대상의 ECG 신호로부터 QRS패턴에 해당하는 특징들을 추출하였고 특징들을 이용하여 심방조기수축 파형을 분류한다. 오류 역전파 기반으로 특징들을 훈련하며 가중치와 바이어스값을 구한뒤 이를 이용하여 정상파형과 심방조기수축 파형을 분류한다.

ECG Pattern Classification Using Back-Propagation Neural Network (역전달 신경회로망을 이용한 심전도 패턴분류)

  • Lee, Je-Suk;Kwon, Hyuk-Je;Lee, Jung-Whan;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.47-50
    • /
    • 1992
  • This paper describes pattern classification algorithm of ECG using back-propagation neural network. We presents new feature extractor using second order approximating function as the input signals of neural network. We use 9 significant parameters which were extracted by feature extractor. 5 most characterized ECG signal pattern is classified accurately by neural network. We use AHA database to evaluate the performance ol the proposed pattern classification algorithm.

  • PDF

An Emerging Pattern Mining based Classification Method for Automated Prediction of Myocardial Ischemia ECG Signals (심근허혈 심전도 신호의 자동화된 예측을 위한 출현 패턴 마이닝 기반의 분류 방법)

  • Heon Gyu Lee;Ming Hao Park;Keun Ho Ryu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.19-22
    • /
    • 2008
  • 최근 서구화된 식생활 패턴과 흡연, 비만 등의 원인으로 인해 심근경색, 협심증과 같은 심근허혈(myocardial ischemia) 질환이 급증하고 있다. 이 논문에서는 심전도 신호로부터 허혈성 심장 질환 진단을 위해 출현 패턴 마이닝을 이용하여 심근경색 및 협심증의 진단 신호인 ischemia beat를 분류 하였다. 또한 기존의 출현 패턴 마이닝에 빠른 패턴 탐사와 저장 공간의 효율성을 고려하여 Apriori-T 빈발 패턴 탐사 알고리즘을 출현 패턴 생성이 가능하도록 확장하였다. PhysioNet의 ST-T 데이터베이스로부터 138개의 대조군(정상)과 ischemia beat 데이터에 제안된 분류 알고리즘을 실험한 결과 최소 75% 및 최대 95%의 예측 정확도를 보였다.

PVC Classification by Personalized Abnormal Signal Detection and QRS Pattern Variability (개인별 이상신호 검출과 QRS 패턴 변화에 따른 조기심실수축 분류)

  • Cho, Ik-Sung;Yoon, Jeong-Oh;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1531-1539
    • /
    • 2014
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. In other words, the design of algorithm that exactly detects abnormal signal and classifies PVC by analyzing the persons's physical condition and/or environment and variable QRS pattern is needed. Thus, PVC classification by personalized abnormal signal detection and QRS pattern variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and subtractive operation method and selected abnormal signal sets. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of abnormal beat detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 98.33% in abnormal beat classification error and 94.46% in PVC classification.

CNN Model-based Arrhythmia Classification using Image-typed ECG Data (이미지 타입의 ECG 데이터를 사용한 CNN 모델 기반 부정맥 분류)

  • Yeon-Suk Bang;Myung-Soo Jang;Yousik Hong;Sang-Suk Lee;Jun-Sang Yu;Woo-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.205-212
    • /
    • 2023
  • Among cardiac diseases, arrhythmias can lead to serious complications such as stroke, heart attack, and heart failure if left untreated, so continuous and accurate ECG monitoring is crucial for clinical care. However, the accurate interpretation of electrocardiogram (ECG) data is entirely dependent on medical doctors, which requires additional time and cost. Therefore, this paper proposes an arrhythmia recognition module for the purpose of developing a medical platform through the analysis of abnormal pulse waveforms based on Lifelogs. The proposed method is to convert ECG data into image format instead of time series data, apply visual pattern recognition technology, and then detect arrhythmia using CNN model. In order to validate the arrhythmia classification of the CNN model by image type conversion of ECG data proposed in this paper, the MIT-BIH arrhythmia dataset was used, and the result showed an accuracy of 97%.