• Title/Summary/Keyword: ECG(electrocardiogram)

Search Result 425, Processing Time 0.028 seconds

Comparison of Novel Telemonitoring System Using the Single-lead Electrocardiogram Patch With Conventional Telemetry System

  • Soonil Kwon;Eue-Keun Choi;So-Ryoung Lee;Seil Oh;Hee-Seok Song;Young-Shin Lee;Sang-Jin Han;Hong Euy Lim
    • Korean Circulation Journal
    • /
    • v.54 no.3
    • /
    • pp.140-153
    • /
    • 2024
  • Background and Objectives: Although a single-lead electrocardiogram (ECG) patch may provide advantages for detecting arrhythmias in outpatient settings owing to user convenience, its comparative effectiveness for real-time telemonitoring in inpatient settings remains unclear. We aimed to compare a novel telemonitoring system using a single-lead ECG patch with a conventional telemonitoring system in an inpatient setting. Methods: This was a single-center, prospective cohort study. Patients admitted to the cardiology unit for arrhythmia treatment who required a wireless ECG telemonitoring system were enrolled. A single-lead ECG patch and conventional telemetry were applied simultaneously in hospitalized patients for over 24 hours for real-time telemonitoring. The basic ECG parameters, arrhythmia episodes, and signal loss or noise were compared between the 2 systems. Results: Eighty participants (mean age 62±10 years, 76.3% male) were enrolled. The three most common indications for ECG telemonitoring were atrial fibrillation (66.3%), sick sinus syndrome (12.5%), and atrioventricular block (10.0%). The intra-class correlation coefficients for detecting the number of total beats, atrial and ventricular premature complexes, maximal, average, and minimal heart rates, and pauses were all over 0.9 with p values for reliability <0.001. Compared to a conventional system, a novel system demonstrated significantly lower signal noise (median 0.3% [0.1-1.6%] vs. 2.4% [1.4-3.7%], p<0.001) and fewer episodes of signal loss (median 22 [2-53] vs. 64 [22-112] episodes, p=0.002). Conclusions: The novel telemonitoring system using a single-lead ECG patch offers performance comparable to that of a conventional system while significantly reducing signal loss and noise.

A Method for Estimation and Elimination of EGG Artifacts from Scalp EEG Using the Least Squares Acceleration Based Adaptive Digital Filter (최소 제곱 가속 기반의 적응 디지털 필터를 이용한 두피 뇌전도에서의 심전도 잡음 추정 및 제거)

  • Cho, Sung-Pil;Song, Mi-Hye;Park, Ho-Dong;Lee, Kyoung-Joung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1331-1338
    • /
    • 2007
  • A new method for detecting and eliminating the Electrocardiogram(ECG) artifact from the scalp Electroencephalogram(EEG) is proposed. Based on the single channel EEG, the proposed method consists of 4 procedures: emphasizing the R-wave of ECG artifact from EEG using the least squares acceleration(LSA) filter, detecting the R-wave from the LSA filtered EEG using the phase space method and R-R interval, generating the delayed impulse synchronized to the R-wave and elimination of the ECG artifacts based on the adaptive digital filter using the impulse and raw EEG. The performance of the proposed method was evaluated in the two separating parts of R-wave detection and, ECG estimation and elimination from EEG. In the R-wave detection, the proposed method showed the mean error rate of 6.285(%). In the ECG estimation and elimination using simulated and/or real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, in which independent component analysis and ensemble average method are used. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifact from single channel EEG and simple for ambulatory/portable EEG monitoring system.

Comparison of Characteristics of P-Wave Detection in ECG with Wireless Patch Electrodes

  • Cho, Young Chang;Kim, Min Soo;Yoon, Jeong Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • P-wave characteristic in the human electrocardiogram (ECG) is important in the diagnosis of atrial conduction pathology. In this paper, we measured an ECG signal from patient with cardiovascular disease using one lead ECG electrode system which is based on the wireless cardiac monitoring system. And we detected a P-wave in ECG signal using the complex-valued continuous wavelet transforms (CWT) according to two kinds of patch type electrodes such as an existing narrow patch type electrode and the improved wide patch type electrode presented in this paper. Also, we compared the characteristics in detecting the P-wave in terms of the magnitude and the width of P-waves. From the results of comparison we found that the width and the magnitude of P-wave detected using the wide patch type electrode is improved to be interpreted easier compared to those using the narrow patch type electrode. Furthermore, we have also proven that the complex-valued CWT can be used as a robust detector for P-wave in ECG signal analysis.

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

Overview of Exercise electrocardiogram in terms of insurance medicine (운동부하 검사의 보험의학적 이해와 의의)

  • Hyun, Hyeyun
    • The Journal of the Korean life insurance medical association
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2013
  • The exercise ECG test is a well-established, inexpensive, and non-invasive procedure for answering important clinical questions related to heart problems. The heart disease is directly led to mortality and serious issue to insurance medicine. Here is some evidence for interpretation of exercise ECG test results can determine prognosis of the heart disease.

  • PDF

A Design of the Telemetry Transmitter for Monitoring Exercise Electrocardiogram (운동중의 심전도 모니터링을 위한 원격조정 송신기의 설계)

  • 권창옥;최준영
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.113-118
    • /
    • 1982
  • This paper presents a frequency modulated radio-telemetry, transmitter for monitoring and transmitting an exercise electrocardiogram (ECG) and respiration activity simultaneously on single carrier frequency in the standard FM broadcast band of 88-108 MHz. We have evaluated the performance of the FM telemetry transmitter which is proposed on the basis of an exercise ECG test in the treadmill.

  • PDF

Multi-modal Authentication Using Score Fusion of ECG and Fingerprints

  • Kwon, Young-Bin;Kim, Jason
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.132-146
    • /
    • 2020
  • Biometric technologies have become widely available in many different fields. However, biometric technologies using existing physical features such as fingerprints, facial features, irises, and veins must consider forgery and alterations targeting them through fraudulent physical characteristics such as fake fingerprints. Thus, a trend toward next-generation biometric technologies using behavioral biometrics of a living person, such as bio-signals and walking characteristics, has emerged. Accordingly, in this study, we developed a bio-signal authentication algorithm using electrocardiogram (ECG) signals, which are the most uniquely identifiable form of bio-signal available. When using ECG signals with our system, the personal identification and authentication accuracy are approximately 90% during a state of rest. When using fingerprints alone, the equal error rate (EER) is 0.243%; however, when fusing the scores of both the ECG signal and fingerprints, the EER decreases to 0.113% on average. In addition, as a function of detecting a presentation attack on a mobile phone, a method for rejecting a transaction when a fake fingerprint is applied was successfully implemented.

Compression of Electrocardiogram Using MPE-LPC (MPE-LPC를 이용한 심전도 신호의 압축)

  • 이태진;김원기;차일환;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.866-875
    • /
    • 1991
  • In this paper, multi pulse excited-linear predictive coding (MPE-LPC), where the correlation eliminated residual signal is modeled by a few pules, is shown to be effective for the compression of electrocardiogram (ECG) data, and a more efficient scheme for a faithful reconstruction of ECG is proposed. The reconstruction charateristic of QRS's and P.T waves is improved using the adaptive pulse allocation (APA), and the compression ratio (CR) can be changed by controlling the mumber of modeling pulses. The performance of the proposed method was evaluated using 10 normal and 10 abnormal ECG data. The proposed method had a better performance than the variable threshold amplitude zone time epoch coding (AZTEC) algorithm and the scan-along polygonal approximation (SAPA) algorithm with the same CR. With the CR in kthe range of 8:1 to 14:1, we could compress ECG data efficiently.

  • PDF

Predicton and Elapsed time of ECG Signal Using Digital FIR Filter and Deep Learning (디지털 FIR 필터와 Deep Learning을 이용한 ECG 신호 예측 및 경과시간)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.563-568
    • /
    • 2023
  • ECG(electrocardiogram) is used to measure the rate and regularity of heartbeats, as well as the size and position of the chambers, the presence of any damage to the heart, and the cause of all heart diseases can be found. Because the ECG signal obtained using the ECG-KIT includes noise in the ECG signal, noise must be removed from the ECG signal to apply to the deep learning. In this paper, Noise included in the ECG signal was removed by using a lowpass filter of the Digital FIR Hamming window function. When the performance evaluation of the three activation functions, sigmoid(), ReLU(), and tanh() functions, which was confirmed that the activation function with the smallest error was the tanh() function, the elapsed time was longer when the batch size was small than large. Also, it was confirmed that result of the performance evaluation for the GRU model was superior to that of the LSTM model.

Implementation and Evaluation of ECG Authentication System Using Wearable Device (웨어러블 디바이스를 활용한 ECG 인증 시스템 구현 및 평가)

  • Heo, Jae-Wook;Jin, Sun-Woo;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.1-6
    • /
    • 2019
  • As mobile technologies such as Internet of Things (IoT)-based smart homes and financial technologies (FinTech) are developed, authentication by smart devices is used everywhere. As a result, presence-based biometric authentication using smart devices has become a new mainstream in knowledge-based authentication methods like the existing passwords. The electrocardiogram (ECG) is less prone to forgery, and high-level personal identification is its unique feature from among various biometric authentication methods, such as the pulse, fingerprints, the face, and the iris. Biometric authentication using an ECG is receiving a great deal of attention due to its uses in healthcare and FinTech. In this study, we implemented an ECG authentication system that allows users to easily measure and authenticate their ECG waveforms using a miniaturized wearable device, rather than a large and expensive measurement device. The implemented ECG authentication system identifies ECG features through P-Q-R-S-T feature point identification, and was user-certified under the proposed authentication protocols. Finally, assessment of measurements in a majority of adult males showed a relatively low false acceptance rate of 1.73%, and a low false rejection rate of 4.14%, in a stable normal state. In a high-activity state, the false acceptance rate was 13.72%, and the false rejection rate was 21.68%. In a high-heart rate state, the false acceptance rate was 10.48%, and the false rejection rate was 11.21%.