• 제목/요약/키워드: ECD(eddy current damping)

검색결과 8건 처리시간 0.017초

와전류 댐퍼의 동적특성 (Dynamic Characteristics of Eddy Current Damper)

  • 곽동기;황재혁;배재성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.947-951
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force thus and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require the damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

  • PDF

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

와전류 충격완충장치의 실험적 동특성 연구 (Experimental Study for Dynamic Characteristics of Eddy Current Shock Absorber)

  • 곽동기;황재혁;배재성
    • 한국항공우주학회지
    • /
    • 제35권12호
    • /
    • pp.1089-1094
    • /
    • 2007
  • 연구에서는 코일 스프링 및 작동유체가 없는 새로운 감쇠기의 개념을 소개한다. 이 감쇠기는 영구자석과 전도체 실린더로 구성된다. 극성이 반대인 자석은 반발력을 발생시키고, 이는 코일 스프링과 같은 역할을 한다. 영구자석과 전도체 실린더 사이의 상대운동은 기전력을 발생시키는 와전류를 생성하고, 이로 인해 감쇠 유체를 대신할 수 있는 감쇠력을 만든다. 이러한 감쇠를 와전류 감쇠기라고 한다. 본 연구에서 제안된 와전류 감쇠기의 중요한 장점은 감쇠 유체 및 어떠한 외부의 전력도 필요로 하지 않고, 비접촉식이며, 온도에도 민감하지 않다. 본 연구에서는 제안된 와전류 감쇠기를 제작하고 실험을 통하여 감쇠기의 동적 특성을 조사하였다. 본 연구의 결과는 제안된 와전류 감쇠기가 우수한 감쇠 성능을 가짐을 보였다.

MTMD를 이용한 보의 진동 억제 (Vibration Suppression of a Cantilever Beam Using MTMD)

  • 배재성;황재혁;김종혁;임재혁
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1091-1097
    • /
    • 2011
  • In the present study, TMD(tuned mass damper) with eddy current damping is proposed to suppress the vibration of a cantilever beam effectively. The advantages of TMD are that it is simple and its performance are excellent at any particular frequency. However, TMD may have the low performance at other frequency. To solve this problem and improve its performance, this study applies the eddy current damping to TMD. This TMD with ECD is named as MTMD(magnetically tuned mass damper). MTMD is designed for the vibration suppression of a cantilever beam. The mathematical modeling, simulation, and experiments of the cantilever beam with MTMD are performed. From analytic and experimental results, it can be concluded that the vibration suppression performance of MTMD are excellent.

Design and application of a novel eddy current damper for a high-rise sightseeing tower

  • Kaifang Liu;Yanhui Liu;Chia-Ming Chang;Ping Tan
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.573-587
    • /
    • 2023
  • A conventional tuned mass damper (TMD) provides a passive control option to suppress the structures' wind- or earthquake-induced vibrations. However, excessive displacements of the TMD raise concerns in the practical implementation. Therefore, this study proposes a novel TMD designed for and deployed on a high-rise sightseeing tower. The device consists of an integrated two-way slide rail mount and an eddy current damper (ECD) with a stroke control mechanism. This stroke control mechanism allows the damping coefficient to automatically increase when the stroke reaches a predetermined value, preventing excessive damper displacements during large earthquakes. The corresponding two-stage damping parameters are designed with a variable-thickness copper plate to enable the TMD stroke within a specified range. Thus, this study discusses the detailed design schemes of the device components in TMD. The designed two-stage damping parameters are also numerically verified, and the structural responses with/without the TMD are compared. As seen in the results, the proposed TMD yields effective control authority to limit the acceleration response within a comfort level. In addition, this TMD resolves the spatial availability for the damper movement in high-rise buildings by the controllable damping mechanism.

Enhance the damping density of eddy current and electromagnetic dampers

  • Li, Jin-Yang;Zhu, Songye;Shen, Jiayang
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.15-26
    • /
    • 2019
  • Over the past decades, a great variety of dampers have been developed and applied to mechanical, aerospace, and civil structures to control structural vibrations. This study is focused on two emerging damper types, namely, eddy current dampers (ECDs) and electromagnetic damper (EMDs), both of which are regarded as promising alternatives to commonly-applied viscous fluid dampers (VFDs) because of their similar mechanical behavior. This study aims to enhance the damping densities of ECDs and EMDs, which are typically lower than those of VFDs, by proposing new designs with multiple improvement measures. The design configurations, mechanisms, and experimental results of the new ECDs and EMDs are presented in this paper. The further comparison based on the experimental results revealed that the damping densities of the proposed ECD and EMD designs are comparable to those of market-available VFDs. Considering ECDs and EMDs are solid-state dampers without fluid leakage problems, the results obtained in this study demonstrate a great prospect of replacing conventional VFDs with the improved ECDs and EMDs in future large-scale applications.

와전류 감쇠기를 적용한 평판의 진동 저감에 관한 실험적 연구 (A Experimental Study on Vibration Attenuation of a Plate with Eddy Current Damper)

  • 편봉도;김종혁;배재성;황재혁
    • 한국항공우주학회지
    • /
    • 제48권5호
    • /
    • pp.355-361
    • /
    • 2020
  • 인공위성 중 군사적 성격을 띠는 저궤도 소형 인공위성의 경우 다표적 관측을 필요로 하고 고해상도의 사진 및 영상의 수요가 증가하는 추세이다. 고해상도 영상과 다표적 관측을 위해 인공위성의 기동성이 가장 큰 변수로 작용한다. 소형 인공위성의 경우 고기동성을 갖게 되면 빠르게 자세기동을 할 수 있지만 자세 기동을 완료 후 다음 자세 기동을 할 때 잔류진동이 발생하게 된다. 이에 본 연구에서 자세 기동 후 발생하는 평판의 진동 특성을 검증하기 위하여 자세기동을 모사하기 위한 실험 치구를 제작하고 실험을 수행하였다. 추가로 이러한 진동을 저감시키기 위해 영구자석을 이용한 수동형 감쇠방법으로 와전류 브레이크 시스템을 응용한 와전류 감쇠기를 제시하였다. 와전류 감쇠기를 적용하기 위하여 수학적 모델을 정립하였으며 영구자석의 자속밀도와 공극거리에 따라 이를 실험적으로 구현하였으며, 4개의 태양전지판(평판) 중 1개 평판을 특정하여 와전류감쇠기를 적용유무에 따라 자세 기동 후 발생하는 잔류진동에 대한 저감 성능을 실험적으로 검증하였다.

의료용 로봇의 미진동제어를 위한 가변감쇠형 동조질량감쇠기 기술 개발 (Developing Tuned Mass Damper of Adjustable Damping Type to Control the Vibrations of Medical Robots)

  • 차운용;전종균;박상곤;한현희
    • 한국소음진동공학회논문집
    • /
    • 제24권9호
    • /
    • pp.706-715
    • /
    • 2014
  • Recently, the medical community has been enthusiastically welcoming robots that are able to provide high-quality medical services across the board, including assisting the surgeons during surgeries. In response, many higher education institutions and research facilities started to conduct various experiments and studies about these robots. During such research, it was discovered that the arm of one particular robot type that is being developed to assist surgeries are prone to vibrate even from the weakest impact, in addition to other residual vibration problems. We attempted to reduce such dynamic response by using a MF-TMD that is produced by adding magnetic fluid to ECD. We verified the MF-TMD's performance by testing it within various frequency bands and attenuations. We then designed a cantilever that was structurally similar to the robot's arm. We attached the MF-TMD to this cantilever and conducted a pilot experiment, which validated our hypothesis that MF-TMD will reduce the robot arm's vibrations through its optimal damping ratio. Henceforth, we attached the MF-TMD to the robot arm in question and conducted a performance experiment in which we tuned the MF-TMD's frequency and damping factor to its optimal level and measured the vibrations of the arm. The experiment demonstrated that the vibrations that occurred whenever the arms rotated were significantly reduced.