• 제목/요약/키워드: ECC병렬 처리

검색결과 7건 처리시간 0.684초

병렬화된 에러 보정 코드 모듈 기반 프로세서 속도 및 신뢰도 향상 (High Speed and Robust Processor based on Parallelized Error Correcting Code Module)

  • 강명진;박대진
    • 한국정보통신학회논문지
    • /
    • 제24권9호
    • /
    • pp.1180-1186
    • /
    • 2020
  • 임베디드 시스템 중 하나인 TPU (Tiny Processing Unit)를 사용하는 데에는 많은 제약들이 따른다. 외부 충격에 의해 데이터 통신 중 잡음이 발생하거나, 충분한 전력이 공급되지 않아 문턱전압을 넘지 못해 올바른 값 전달이 이루어지지 않는 경우가 있다. 이러한 문제점들을 해결하기 위해 많은 임베디드 시스템에서는 ECC (Error Correcting Code)를 사용하는데, ECC를 추가하게 되면서 메모리에서 데이터를 읽어오는 시간이 더 오래 걸리게 되는 문제점이 발생한다. 따라서 우리는 ECC 처리된 코드를 읽어오는 과정을 병렬처리하여 병목현상을 완화하고 TPU의 속도 및 데이터 안정성을 높이는 모델을 제안한다. 제안된 구조는 기존 구조에 비해 메모리를 조금 더 사용하여 안정성과 더 빠른 속도를 보여준다. 실험은 행렬의 연산을 사용하여 진행되었으며, 제안된 구조는 이전의 구조보다 7% 빠른 속도를 보여준다.

타원곡선 기반 공개키 암호 시스템 구현을 위한 Scalable ECC 프로세서 (A Scalable ECC Processor for Elliptic Curve based Public-Key Cryptosystem)

  • 최준백;신경욱
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1095-1102
    • /
    • 2021
  • 성능과 하드웨어 복잡도 사이에 높은 확장성과 유연성을 갖는 확장 가능형 ECC 구조를 제안한다. 구조적 확장성을 위해 유한체 연산을 32 비트 워드 단위로 병렬 처리하는 처리요소의 1차원 배열을 기반으로 모듈러 연산회로를 구현하였으며, 사용되는 처리요소의 개수를 1~8개 범위에서 결정하여 회로를 합성할 수 있도록 설계되었다. 이를 위해 워드 기반 몽고메리 곱셈과 몽고메리 역원 연산의 확장 가능형 알고리듬을 적용하였다. 180-nm CMOS 공정으로 확장 가능형 ECC 프로세서 (sECCP)를 구현한 결과, NPE=1인 경우에 100 kGE와 8.8 kbit의 RAM으로 구현되었고, NPE=8인 경우에는 203 kGE와 12.8 kbit의 RAM으로 구현되었다. sECCP가 100 MHz 클록으로 동작하는 경우, NPE=1인 경우와 NPE=8인 경우의 P256R 타원곡선 상의 점 스칼라 곱셈을 각각 초당 110회, 610회 연산할 수 있는 것으로 분석되었다.

ECC 연산을 위한 가변 연산 구조를 갖는 정규기저 곱셈기와 역원기 (Scalable multiplier and inversion unit on normal basis for ECC operation)

  • 이찬호;이종호
    • 대한전자공학회논문지SD
    • /
    • 제40권12호
    • /
    • pp.80-86
    • /
    • 2003
  • 타원곡선 암호(Elliptic Curve Crypto-graphy : ECC)는 기존의 어떤 공개키 암호 시스템보다 우수한 비트 당 안전도를 제공하고 있어 최근 큰 관심을 끌고 있다. 타원곡선 암호 시스템은 보다 작은 키 길이를 갖고 있어 시스템의 구현에 있어서 작은 메모리 공간과 적은 처리 전력을 필요로 하므로 다른 암호화 방식에 비해 임베디드 어플리케이션에 적용하는데 유리하다 본 논문에서는 제곱 연산이 용이한 정규기저로 표현된 유한체에서의 곱셈기를 구현하였다. 이 곱셈기는 타원곡선 암호에서 사용되는 GF(2/sup 193/) 상에서 구현하였고, Massey와 Omura가 제시한 병렬 입력-직렬 출력 곱셈기의 구조를 변형하여 출력의 크기와 설계면적을 조절할 수 있다. 또한 제안한 곱셈기를 적용하여 정규기저 역원기를 구현하였다. 곱셈기와 역원기는 HDL을 이용하여 설계하구 0.35㎛ CMOS 셀 라이브러리를 이용하여 구현하였으며 시뮬레이션을 통해 동작과 성능을 검증하였다.

비휘발성 메모리를 위한 병렬 BCH 인코딩/디코딩 방법 및 VLSI 설계 (Parallel BCH Encoding/decoding Method and VLSI Design for Nonvolatile Memory)

  • 이상혁;백광현
    • 대한전자공학회논문지SD
    • /
    • 제47권5호
    • /
    • pp.41-47
    • /
    • 2010
  • 본 논문에서는 SSD (solid state disk)에 쓰이는 NAND flash 메모리 에러 정정에 관한 오류정정 방법 중에서 Parallel BCH(Bose-Chaudhuri-Hocquenghem) 방법 및 VLSI 설계를 제안하였다. 제안된 설계는 에러 정정 능력(t=18, 8) 을 가변적으로 하여 사용빈도수의 증가로 높은 에러 율을 가진 데이터 공간에 신뢰성을 높였고, 디코더의 병렬처리 비트 수를 인코더의 처리 비트 수에 2배로 하여 디코더의 수행시간을 줄였고 이에 따르는 latency도 기존 회로에 비해 1/2로 감소함을 확인 하였다.

확장성에 유리한 병렬 알고리즘 방식에 기반한 $GF(2^m)$나눗셈기의 VLSI 설계 (VLSI Design of an Improved Structure of a $GF(2^m)$ Divider)

  • 문상국
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.633-637
    • /
    • 2005
  • 본 연구에서 제안한 유한체 나눗셈기는 기존에 존재하는 알고리즘을 개선하여 병렬 처리가 가능하도록 개선하였고, 이를 위하여 n bit look-up table 참조 방식을 도입하여 division당 2m/n cycle의 연산 처리량을 가질 때, n의 증가에 따른 회로 면적의 증가, 동작 주파수의 감소가 적어지게 된다. 이에 따라, 높은 연산 처리량과 적은 회로 면적이라는 두 가지 목표를 모두 달성할 수 있는 나눗셈기의 구현이 가능해졌다. 이를 바탕으로, Reed-Solomon Code와 ECC (Elliptic Curve Cryptography) 암호화 알고리즘 등, 통신의 오류 정정 부호 분야와 암호화 분야에서 자주 응용되는 Galois Field에서의 나눗셈 연산을 수행하는 $GF(2^m)$ 나눗셈기를 VHDL을 이용하여 설계하고 FPGA에 구현하여 기능을 검증하였다. 제안된 나눗셈기는 m=4, n=2의 경우에 대해 설계, 검증을 수행하였다. 회로의 구현은 Altera의 10만 게이트 급 FPGA EP20K30ETC144-1 Chip을 이용하여 77Mhz의 최대 동작 주파수상에서의 동작을 검증하였다.

확장 가능형 몽고메리 모듈러 곱셈기 (A Scalable Montgomery Modular Multiplier)

  • 최준백;신경욱
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.625-633
    • /
    • 2021
  • 몽고메리 모듈러 곱셈의 유연한 하드웨어 구현을 위한 확장 가능형 아키텍처를 기술한다. 처리요소 (processing element; PE)의 1차원 배열을 기반으로 하는 확장 가능형 모듈러 곱셈기 구조는 워드 병렬 연산을 수행하며, 사용되는 PE 개수 NPE에 따라 연산 성능과 하드웨어 복잡도를 조정하여 구현할 수 있다. 제안된 아키텍처를 기반으로 SEC2에 정의된 8가지 필드 크기를 지원하는 확장 가능형 몽고메리 모듈러 곱셈기(scalable Montgomery modular multiplier; sMM) 코어를 설계했다. 180-nm CMOS 셀 라이브러리로 합성한 결과, sMM 코어는 NPE=1 및 NPE=8인 경우에 각각 38,317 등가게이트 (GEs) 및 139,390 GEs로 구현되었으며, 100 MHz 클록으로 동작할 때, NPE=1인 경우에 57만회/초 및 NPE=8인 경우에 350만회/초의 256-비트 모듈러 곱셈을 연산할 수 있는 것으로 평가되었다. sMM 코어는 응용분야에서 요구되는 연산성능과 하드웨어 리소스를 고려하여 사용할 PE 수를 결정함으로써 최적화된 구현이 가능하다는 장점을 가지며, ECC의 확장 가능한 하드웨어 설계에 IP (intellectual property)로 사용될 수 있다.

타원곡선을 암호시스템에 사용되는 최적단위 연산항을 기반으로 한 기저체 연산기의 하드웨어 구현 (A Hardware Implementation of the Underlying Field Arithmetic Processor based on Optimized Unit Operation Components for Elliptic Curve Cryptosystems)

  • 조성제;권용진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권1호
    • /
    • pp.88-95
    • /
    • 2002
  • 1985년 N. Koblitz와 V. Miller가 각각 독립적으로 제안한 타원곡선 암호시스템(ECC : Elliptic Curve Cryptosystems)은 보다 짧은 비트 길이의 키만으로도 다른 공개키 시스템과 동일한 수준의 안전도를 유지할 수 있다는 장점을 인해 IC 카드와 같은 메모리와 처리능력이 제한된 하드웨어에도 이식가능 하다. 또한 동일한 유한체 연산을 사용하면서도 다른 타원곡선을 선택할 수 있어서 추가적인 보안이 가능하기 때문에 고수준의 안전도를 유지하기 위한 차세대 암호 알고리즘으로 각광 받고 있다. 본 논문에서는 효율적인 타원곡선 암호시스템을 구현하는데 있어 가장 중요한 부분 중 하나인 타원곡선 상의 점을 고속으로 연산할 수 있는 전용의 기저체 연산기 구조를 제안하고 실제 구현을 통해 그 기능을 검증한다. 그리고 기저체 연산의 면밀한 분석을 통해 역원 연산기의 하드웨어 구현을 위하여 최적인 단위 연산항의 도출에 기반을 둔 효율적인 방법론을 제시하고, 이를 바탕으로 현실적인 제한 조건하에서 구현 가능한 수준의 게이트 수를 가지는 고속의 역원 연산기 구조를 제안한다. 또한, 본 논문에서는 제안된 방법론을 바탕으로 실제 구현된 설계회로가 기존 논문에서 비해 게이트 수는 약 8.8배가 증가하지만, 승법연산 속도는 약 150배, 역원연산 속도는 약 480배 정도 향상되는 우수한 연구 결과가 얻어짐을 보인다. 이것은 병렬성을 적용함으로서 당연히 얻어지는 속도면에서의 이득을 능가하는 성능으로, 본 논문에서 제안한 구조의 우수성을 입증하는 결과이다. 실제로, 승법 연산기의 속도에 관계없이 역원연산의 수행시간은 [lo $g_2$(m-1)]$\times$(clock cycle for one multiplication)으로 최적화가 되며, 제안한 구조는 임의의 유한체 $F_{2m}$에 적용가능하다. 제안한 전용의 연산기는 암호 프로세서 설계의 기초자료로 활용되거나, 타원곡선 암호 시스템 구현시 직접 co-processor 형식으로 임베드 되어 사용할 수 있을 것으로 사료된다.다.