• Title/Summary/Keyword: EC concentration

Search Result 919, Processing Time 0.029 seconds

Differential Cytotoxic Effects of Jaspine B in Various Cancer Cells (다양한 암세포주에서 Jaspine B의 함암활성 비교)

  • Lee, Jihoon;Choi, Kwangik;Kwon, Mihwa;Lee, Dongjoo;Choi, Min-Koo;Song, Im-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1392-1399
    • /
    • 2016
  • Jaspine B is an anhydrophytosphingosine that is isolated from a marine sponge. Because of its structural similarity to sphingosine, it shows anti-cancer effects in human carcinomas. Therefore, this study aims to investigate its anti-proliferative effect on various cancer cells and to correlate its association with the intracellular accumulation of Jaspine B in relevant cancer cells. The anti-proliferative effect of Jaspine B in various cancer cells was determined by a cell viability test, and the intracellular concentration of Jaspine B in relevant cancer cells was determined using mass spectrometry coupled with liquid chromatography. The correlation coefficient and p value between the cytotoxicity and the cell accumulation of Jaspine B were determined using SPSS 16.1. The cytotoxicity of Jaspine B varied depending on the type of cancer cell when compared the $EC_{50}$ values of Jaspine B. Breast and melanoma cancer cells were susceptible to Jaspine B, whereas renal carcinoma cells were resistant. The intracellular concentrations of Jaspine B had a reciprocal correlation with the $EC_{50}$ values in the same cells (r = 0.838). The results suggested that the anti-proliferative effect of Jaspine B was associated with the cellular accumulation of this compound. However, Jaspine B was not a substrate for P-glycoprotein and breast cancer resistance protein, as major efflux pumps caused multidrug resistance. The maintenance of a high intracellular concentration is crucial for the cytotoxic effect of Jaspine B; however, efflux pumps may not be a controlling factor for Jaspine B-related resistance in cancer cells.

Comparison of Soil Chemical Properties in Greenhouse or Open Field Where Flower Crops were Cultivated from 2018 to 2020 (화훼작물이 재배된 온실 또는 노지재배지의 토양 화학성 비교)

  • Kwon, Hye Sook;Heo, Seong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.675-685
    • /
    • 2022
  • A comparative analysis was performed on the soil chemical properties of greenhouse or open field where flower crops were grown from 2018 to 2020. The pH of greenhouse soils was kept slightly higher than the optimum range suggested by Rural Development Administration and that of open field soils was maintained within the optimum range for three years. The contents of organic matter (OM) were within the optimum range without significant change every year in both soils. Available phosphate (Av. P2O5) of greenhouse soils was the highest at 560 mg/kg in 2018, but it decreased every year and fell within the appropriate range in 2020. The concentration of Av. P2O5 in open field soils have fluctuated for three years, not showing a significant difference. Electrical conductivity (EC) of greenhouse soils was higher every year than the standard, 2.0 dS/m, but EC of open field soils remained below the standard. The contents of exchangeable cations were higher than the standard, showing significant differences among the years in greenhouse soils. In open field soils, other cations except exchangeable K+ were maintained higher than the optimal level and only Ca2+ showed a significant difference among the years. In Pearson correlation matrices, the value of exchangeable Ca2+ had a significantly positive correlation with exchangeable Mg2+ content at both greenhouse and open field soils. Based on principal component analysis, the soils of greenhouse were distributed within the range of high concentrations of Av. P2O5, EC and exchangeable cations, while the soils of open field were characterized by low contents of OM and exchangeable cations. Therefore, it is essential to lower the concentration of exchangeable cations in greenhouse soils. It is common for the soils of open field to have a low OM content, so that organic fertilizers should be more actively applied to the soils in open field.

Growth Characteristics and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Different Light Intensities and Nutrient Strengths in Ebb and Flow Subirrigation Systems (Ebb and Flow 저면관수 시스템에서 광강도와 양액농도에 따른 칼랑코에(Kalanchoe blossfeldiana 'Marlene') 생육 및 양분흡수 특성)

  • Noh, Eun-Hee;Jun, Ha-Joon;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.187-194
    • /
    • 2011
  • The objective of this study was to determine the effects of light intensity and electrical conductivity (EC) of nutrient solution on the growth and nutrient uptake of potted kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') with growth stage in ebb and flow subirrigation systems. The plants were grown at four ECs of 0.5, 1.0, 1.5, and 2.0 $dS{\cdot}m^{-1}$ for seedling stage and four ECs of 1.0, 1.5, 2.0, and 3.0 $dS{\cdot}m^{-1}$ for short day stage under three daily photosynthetic photon flux (PPF) of 6.5, 10.3, 18.2 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. At seedling stage, plant height was the longest under the lowest light intensity, and particularly dry weights and leaf areas were the highest at PPF 10.3 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. Dry weights and leaf areas were the highest at EC 1.5 $dS{\cdot}m^{-1}$ regardless of light intensity. At short day exposure, plant height was the longest under the lowest light intensity. Dry weights, leaf areas, and number of pedicels of the plants significantly increased as light intensity increased. Under all light intensity conditions, dry weights, leaf areas, and number of pedicles increased until EC becomes to 1.0 - 2.0 $dS{\cdot}m^{-1}$. And after reached the highest at EC 2.0 $dS{\cdot}m^{-1}$, they decreased at EC 3.0 $dS{\cdot}m^{-1}$. By comparing the ion uptakes at EC 1.5 $dS{\cdot}m^{-1}$ of seedling stage and EC 2.0 $dS{\cdot}m^{-1}$ of short day stage in which the plants grew better, we confirmed that ion balance of nutrient solution among $NO_3{^-}$-N, $H_2PO_4{^-}$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were significantly changed at short day stage compared to seedling stage. For better growth of the plants, both ion balance and EC of nutrient solution should be considered under different light intensities at short day stage while control of EC is enough at seedling stage.

Chemical Control of the Pine Gall Midges (Thecodiplosis japonensis Uchida et Inouye) ( I ) -Low-volume Foliar Spray of the Insecticides- (솔잎혹파리의 약제방제에 관한 연구 -고농도미량엽면살포-)

  • Choi S.Y.;Song Y.H.;Lee H.R.
    • Korean journal of applied entomology
    • /
    • v.18 no.2 s.39
    • /
    • pp.111-116
    • /
    • 1979
  • The experiments were carried out to evaluate the effectiveness of some insecticides in the control of the pine gall midges (Thecodiplosis japonensis Uchida et Inouye) when the low-volume of the insecticides were applied by the mist foliar sprayer. The insecticides, Salithion $(24\%\;Ec)$, Omethoate $(Folimat^{(R)}\;50\%\;Ec)$, Monocrotopos $(Azodrin^{(R)}24\%\;Ec)$, Acephate $(Ortran^{(R)}\;50\%\;Wp)$, Metalkamate $(Bux^{(R)}24\%\;Ec)$. BPMC $(Bassae^{(R)}50\%\;Ec)$ and MIPC $(Mipcin\;50\%\;Wp)$ were tested with 100, 200 and 400 times of water solution on the basis of single application at the six different intervals. Salithion was the most effective for the pressure of the gall formation by the pine gall midges and Omethoate, Monocrotophos and Metalkamate were relativey effective and others no effective. The most reliable concentration of the insecticides was 100 times of water solution, and the feasible timing of insecticide application on the basis of single application would be from May 9 to July 1 with Salithion, June 6 with Metalkamate and June 20 with Omethoate and Monocrotophos. The number of pine needles with the larval injured signs (no larvae in the needles) excluded the gall-formed needles were relatively higher in the treatments of Omethoate, Salithion and Monocrotophos than other insecticides. The treatments of Omethoate, Salithion and Monocrotophos caused the lower larval population in the gall than other insecticides.

  • PDF

Effect of Mineral Nutrient Control on Nutrient Uptake, Growth and Yield of Single-Node Cutting Rose Grown in a Closed Hydroponic System (순환식 수경재배시 무기이온 조절이 Single-Node Cutting 장미의 양분흡수, 생육 및 품질에 미치는 영향)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.252-260
    • /
    • 2008
  • This study was conducted to observe the characteristics of mineral nutrient uptake of single-node cutting rose 'Versilla' and to determine optimal nutrient solution control method for soilless culture of 'Versilla' in a closed hydroponic system. Nutrient solution was managed by five different control methods: macro- and micro-element control in aeroponic system (M&M), macroelement control in aeroponic system (M), nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system(EC-A); EC control in deep flow technique system(EC-D). The concentration of $NO_3$-N exceeds optimal range whereas P and Mg decreased at the later stage of plant growth with the EC control method, EC-A and EC-D. The overall mineral nutrient content increased with S. On the other hand the nutrient content at the root environment was maintained optimal with M&M and M. The nutrient solution control methods had significantly effect on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with the other mineral nutrients control methods. The maximal efficiency of photochemistry (Fv/Fm) was higher for M&M, M and S than that with EC-A and EC-D. Based on the above results, it is highly recommended to control nutrient solution by mineral nutrient control methods (M&M and M) in a closed hydroponic system for single-node cutting rose, 'Versillia'.

Field Survey for Well Water Quality in Hydroponic Farms (양액재배 농가의 원수 수질 조사)

  • 배종향;조영렬;이용범
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.80-88
    • /
    • 1995
  • This survey has been conducted, mostly in inorganic ions, to get some basic data for the culture solution composition, analyzing water quality of some hydroponic farms. pH range was shown from 5.95 to 7.61 and the average of 6.75. Relatively wide range of EC, from 0.07 to 0.97 mS/cm and the average of 0.35 mS/cm were obtained. 19.5 percent of farms investigated showed over 0.5 mS/cm of EC, which means more careful culture solution composition and its management are needed in these farms. Na concentration ranged from 5.0 to 41.4 ppm and Cl concentration ranged from 10 to 99 ppm were shown and their average were 20.38 ppm and 35.16 ppm, respectively. Higher Na concentration compared to standard of 11.5 ppm was shown in 75% of farms and Higher Cl concentration compared to standard of 35.5 ppm was shown in 33.3% of farms. These concentration were considered rather high, which can cause salt accumulation in substrate mats. Ca and Mg concentrations were ranged from 1.60 to 131 ppm and 0.96 to 34.1 ppm, respectively. Average concentrations were 26.11 ppm in Ca and 8.10 ppm in Mg. In case of HCO$_3$, 24 to 295 ppm of concentration range and average of 63.13 ppm were obtained. Fe range was 0.01 to 0.87 ppm and its average was 0.14 ppm. This results showed that Fe elimination was necessary in well water.

  • PDF

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Effect of Nutrient Solution Strength on Growth, Fruit Quality and Yield of Strawberry 'Ssanta' in Hydroponics (배양액의 농도가 딸기 '싼타'의 생육, 수량 및 과실의 품질에 미치는 영향)

  • Jun, Ha Joon;Byun, Mi Soon;Liu, Shi Sheng;Jeon, Eui Hwan;Park, So Deuk;Chae, Jang Hee
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.192-198
    • /
    • 2012
  • Experiments were conducted to investigate the optimum concentration of nutrient solution in hydroponics for strawberry 'Ssanta' bred at Gyongsangbuk-do Agricultural Research & Extension Services. Nutrient solutions for strawberry, which made by Yamazaki, were supplied EC (Electrical Conductivity) 0.6, 0.8, 1.2, and $1.8dS{\cdot}m^{-1}$ after planting on cocopeat medium during experiment period. Growth of shoot of strawberries did not show statistical differences among treatments. Fruit length showed the longest in EC $0.8dS{\cdot}m^{-1}$ in all clusters. In the second flower cluster, fruit length showed longer in EC 0.8 and $1.2dS{\cdot}m^{-1}$ than EC 0.6 and $1.8dS{\cdot}m^{-1}$. In the third flower cluster, it showed the longest in EC 0.8 and $1.2dS{\cdot}m^{-1}$, followed by 0.6 and $1.8dS{\cdot}m^{-1}$. The longest was in EC $0.8dS{\cdot}m^{-1}$ and the shortest in EC $1.8dS{\cdot}m^{-1}$ in the fourth flower cluster. Fruit diameter did not show significant differences among treatments, but longest in EC 0.8 and $1.2dS{\cdot}m^{-1}$ in all clusters. The heaviest mean fruit weight appeared in EC $0.8dS{\cdot}m^{-1}$ in all flower clusters. And heavier in EC $1.2dS{\cdot}m^{-1}$ in the second and third clusters. Also the weight was significantly light in plants grown in EC 0.6 and $1.8dS{\cdot}m^{-1}$ in the second and third cluster. Soluble solids of fruit was the highest in EC $0.6dS{\cdot}m^{-1}$ in all clusters. As the results, we came to the conclusion that the optimum EC for strawberry 'Ssanta' was EC $0.8{\sim}1.2dS{\cdot}m^{-1}$ in this experiment.

Effect of Environmental Factors on the Determination of the Ecotoxicological Threshold Concentration of Cu in Soil Pore Water through Biotic Ligand Model and Species Sensitivity Distribution (Biotic ligand model과 종 민감도 분포를 이용한 토양 공극수 내 Cu의 생태독성학적 허용농도 결정에 미치는 환경인자의 영향)

  • Yu, Gihyeon;An, Jinsung;Jeong, Buyun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • Biotic ligand model (BLM) and species sensitivity distribution (SSD) were used to determine the site-specific Cu threshold concentration (5% hazardous concentration; HC5) in soil pore water. Model parameters for Cu-BLM were collected for six plants, one collembola, and two earthworms from published literatures. Half maximal effective concentration ($EC_{50}\{Cu^{2+}\}$), expressed as $Cu^{2+}$ activity, was calculated based on activities of major cations and the collected Cu-BLM parameters. The $EC_{50}\{Cu^{2+}\}$ varied from 2 nM to $251{\mu}M$ according to the variation in environmental factors of soil pore water (pH, major cation/anion concentrations) and the type of species. Hazardous activity for 5% (HA5) and HC5 calculated from SSD varied from 0.076 to $0.4{\mu}g/L$ and 0.4 to $83.4{\mu}g/L$, respectively. HA5 and HC5 significantly decreased with the increase in pH in the region with pH less than 7 due to the decrease in competition with $H^+$ and $Cu^{2+}$. In the region with pH more than 7, HC5 increased with the increase in pH due to the formation of complexes of Cu with inorganic ligands. In the presence of dissolved organic carbon (DOC), Cu and DOC form a complex, which decreases $Cu^{2+}$ activity in soil pore water, resulting in up to 292-fold increase in HC5 from 0.48 to $140{\mu}g/L$.

Compensation of Aethalometer Black Carbon Data Observed at a Gwangju Site (광주 도심지역에서 측정한 Aethalometer 검댕입자 자료의 보정)

  • Park, Seung-Shik;Jung, Jung-H.;Cho, Sung-Y.;Kim, Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.571-578
    • /
    • 2009
  • $PM_{2.5}$ black carbon (BC) concentrations were measured to investigate the filter spot loading effect in raw BC data at 5-minute time-based resolution using a single-wavelength aethalometer at a Gwangju site. Also the elemental carbon (EC) concentrations from 24-hr integrated filter-based measurements of $PM_{2.5}$ particles were determined to compare with the loading compensated BC values. Close examination of the time-series BC data showed clearly the "gaps" when the filter tape advances, suggesting the correction of raw BC data. Therefore, we calculated the average BC concentration in each range of attenuation (ATN) to decide if there was (or was not) an effect on the aethalometer data according to the loading of the filter spot. A consistent decrease of average BC concentration was found with increasing ATN values for every month, suggesting there was a consistent "spot loading effect" in the raw BC data. The loading compensated BC concentration according to a simple compensation model with loading effect was 1.01~1.15 times greater than the raw BC data. The 24-hr average concentration of EC observed during summer sampling period was about 3% higher than the original 24-hr average BC value and 2% lower than the loading compensated BC concentration.