• Title/Summary/Keyword: EC 재이용

Search Result 102, Processing Time 0.029 seconds

The Influences of Rice Straw and Gypsum Applied to a Saline Soil on the Growth Status of rice Seedlings when Flooded Direct Sowing (볏짚 및 석고시용(石膏施用)이 간척답(干拓畓) 직파(直播)벼의 초기생육(初期生育) 장해(障害)에 미치는 영향(影響))

  • Hwang, Seon-Woong;Lee, Choon-Soo;Lee, Yong-Jae;Kwak, Han-Kang;Park, Nae-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.34-39
    • /
    • 1990
  • The experiment was conducted in the pots of flooded saline paddy soil to evaluate influence of rice straw and gypsum application on germination and early growth status of directly sowed rice seedlings. 1. Germination percentage of rice seedlings were higher in treatment sowing at 1 day after submergence than that of treatment sowing at 21 days after submergence, and was severely interrupted by rice straw application. 2. Application of rice straw promoted the release of bicarbonate and volatile fatty acid of submerged water, while the amount of sulfate and soluble cations were decreased as compared to control. 3. Germination percentage of rice seedling had significant negative correlations with chemical characters of submerged water, and was highly affected by submerged water at 7 days after sowing. 4. Rice straw application interrupted germination of rice seedling by increasing pH of submerged water over critical level, and gypsum application depressed the early growth of young seedling dues to high salt concentration. 5. The relaease of bicarbonate was remarkedly increased with increasing pH over 7.5 of submerged water.

  • PDF

Molecular Cloning and Gene Expression of Sinorhizobium meliloti Mannitol Dehydrogenase in Escherichia coli, and Its Enzymatic Characterization (Sinorhizobium meliloti 유래 Mannitol Dehydrogenase 유전자의 클로닝 및 대장균 내 발현과 효소특성 규명)

  • Jang, Myoung-Uoon;Park, Jung-Mi;Kim, Min-Jeong;Lee, So-Won;Kang, Jung-Hyun;Kim, Tae-Jip
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.153-159
    • /
    • 2013
  • A mannitol dehydrogenase (MDH; EC 1.1.1.67) gene was cloned from the Sinorhizobium meliloti 1021 (KCTC 2353) genome and expressed in Escherichia coli. It was seen to have an open reading frame consisting of 1,485 bp encoding 494 amino acids (about 54 kDa), which shares approximately 35-55% of amino acid sequence identity with some known long-chain dehydrogenase/ reductase family enzymes. The recombinant S. meliloti MDH (SmMDH) showed the highest activity at $40^{\circ}C$, and pH 7.0 (D-fructose reduction) and pH 9.0 (D-mannitol oxidation), respectively. SmMDH could catalyze the oxidative/reductive reactions between D-mannitol and D-fructose in the presence of $NAD^+/NADH$ as a coenzyme, but not with NADP+/NADPH. These results indicate that SmMDH is a typical $NAD^+/NADH$-dependent mannitol dehydrogenase.

The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery (리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향)

  • Ko, Hyoung Shin;Park, Hyun Woo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.718-724
    • /
    • 2018
  • In this study, the $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ precursor was prepared by the concentration gradient co-precipitation method. In order to overcome the structural change due to oxygen desorption in the cathode active material with high nickel content, the physical and electrochemical analysis of the cathode active material according to the calcination temperature were investigated. Physical properties of $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$ were analyzed by FE-SEM, XRD and TGA. The electrochemical performance of the coin cell using a cathode active material and $LiPF_6$(EC:EMC=1:2 vol%) electrolyte was evaluated by the initial charge/discharge efficiency, cycle retention, and rate capabilities. As a result, the initial capacity and initial efficiency of cathode materials were excellent with 244.5~247.9 mAh/g and 84.2~85.8% at the calcination temperature range of $750{\sim}760^{\circ}C$. Also, the capacity retention exhibited high stability of 97.8~99.1% after 50cycles.

The Patterns of Inorganic Cations, Nitrogen and Phosphorus of Plants in Moojechi Moor on Mt. Jeongjok. (정족산 무제치늪 식물의 무기이온, 질소 및 인의 양상)

  • 배정진;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • To investigate ecophysiological characteristics of plants species adapted to moor habitat, we selected 22 species plants and analyzed inorganic cations (K, Ca, Mg), heavy metals (Al, Fe, Mn) and total nitrogen and phosphorus quantitatively. Moojechi moor indicated typical acidic and oligotrophic conditions with pH of 5.0∼5.6 (pH 4.3∼5.1 in soil) and EC of 15∼30μ S/cm, and contained very low contents of soil divalent cation such as Ca and Mg but high contents of heavy metals (esp. Al). With respect to inorganic cation contents, investigated plants species showed remarkable interspecific difference. Plant species belonging to J. effusus var. decipiens, M. japonica, I. globosa, M. sacchariflorus, R. mucronulatum, R. yedoense var. poukhanense, H. micrantha, D. rotundifolia showed very low contents of inorganic cation below 400 μ M/g DW, but plant species of C. palustris var. spontanea, L. sessilifolia, P. mandarinorum, C. lineare, S. austriaca sub. glabra, V. mandshurica, A. decursiva showed high cation contents in leaves. Especially, S. austriaca sub. glabra (Compositae) and V. mandshurica (Violaceae) showed pattern accumulating Ca and Mg with plant growth, but I. ensata var. spontanea (Iridaceae) and S. officinalis (Rosaceae) showed decreasing tendency. Meanwhile, most plant species showed low contents of soluble metal ions in leaves in spite of high heavy metal contents on soil, and indicated remarkable interspecific differences in the total contents and composition of heavy metals accumulated. Despite low contents of N and P on soil, most plant species indicated relatively high contents of N and P in leaves at the early stage of growth, and showed slowly decreasing pattern according to growth. Consequently, it seems that plant species inhabited on Moojechi moor cope with acidic-oligotrophic conditions, accumulating inorganic cations and nitrogen at the early growing stage and reutilizing them in the course of growth, and developing heavy metal excluding mechanism.

Development of an aequorin-based assay for the screening of corticotropin-releasing factor receptor antagonists (CRF1 길항제 스크리닝을 위한 에쿼린 기반 세포실험 개발연구)

  • Noh, Hyojin;Lee, Sunghou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7575-7581
    • /
    • 2015
  • Corticotropin-releasing factor(CRF), one of the stress driven neuropeptides, was widely proposed to influence hair loss and re-growth. For the development of receptor antagonists, the screening system based on intracellular calcium signal process was developed and optimized. The aequorin parental cells were transfected with CRF1 receptor and alpha 16 promiscuous G protein cDNA to establish HEK293a16/hCRF1, a stable cell line for the human CRF1 receptor. In HEK293a16/hCRF1 cells, the range of sauvagine dose response was 12-fold higher($EC_{50}:15.21{\pm}1.83nM$) than in the transiently expressed cells, hence essential conditions for the antagonist screening experiments such as the robust signals and high solvent tolerance were secured. The standard antagonists for the CRF1 receptor, antalarmin and CP154526, resulted $IC_{50}$ values of $414.1{\pm}5.5$ and $290.7{\pm}1.9nM$, respectively. Similar results were presented with frozen HEK293a16/hCRF1 cells. Finally, our HEK293a16/hCRF1 cells with the aequorin based cellular functional assay can be a model system for the development of functional cosmetics and modulators that can have a clinical efficacy on hair re-growth.

Characteristics of chemical water quality and the empirical model analysis before and after the construction of Baekje Weir (금강수계 백제보 건설 전·후의 화학적 수질특성 및 경험적 모델 분석)

  • Kim, Yu-Jin;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.48-59
    • /
    • 2019
  • This study analyzed the water quality characteristics and developed empirical models prior to and after the construction of Baekje Weir, in the Geum River watershed between 2004-2017. The comparative evaluation of the surface water chemistry before and after the four major river projects on the weirs indicated that total phosphorus (TP), based on annual data, rapidly decrease after the construction of the weir while the total nitrogen(TN) decreased. Conversely, chlorophyll-a (CHL) concentration, which is a good indicator of primary productivity, increased after the construction of the weir together with an increase in specific conductivity. Simply put, the construction of the weir led to the decrease in concentrations of N and P due to the increased water residence time (WRT), whereas the CHL :TP ratio greatly increased in magnitude. The regression analysis of the empirical model indicated that CHL had no significant relation (r=0.068, p=0.6102, n=58) with TP before the weir construction, but had a relation with TP after the weir construction (r=0.286, p<0.05, n=56). Therefore, such conditions resulted in an increase in primary productivity on a given unit of phosphorus, resulting in frequent algal blooms. In contrast, seasonal suspended solids (SS) and TP increased during the monsoon period, compared to the pre-monsoon, thereby showing positive correlations (r>0.40, p<0.01, n=163) with precipitation. If the government consistently discharges water from the weir, the phosphorus concentration will be increased due to its reversion to a lotic waterbody from a lentic waterbody hereby reducing algal blooms in the future.

Evaluation of Winter Green Manure Crops as Alternative of Expeller Cake Fertilizer on Environment-friendly Red Pepper Production (친환경 고추 재배에서 유박 비료 대체재로서 동계 풋거름 작물의 이용 가능성 평가)

  • Choi, Jang-Yong;Yun, Yeo-Uk;Lee, Jin-Il;Hong, Ki-Heung;Kang, Young-Sik
    • Korean Journal of Organic Agriculture
    • /
    • v.30 no.2
    • /
    • pp.279-290
    • /
    • 2022
  • This study was conducted to find out that winter green manure crops could be efficient replacements of expeller cake fertilizers, which were mostly imported, on environment-friendly red pepper production. Four treatments were compared under the condition of plastic film house: 1) barley (B); 2) hairy vetch (HV); 3) mixtures of barley and hairy vetch (B/HV); 4) expeller cake (EC). Total nitrogen content in hariy vetch was 3.6%, which was higher than 1.5~1.8% in barley and mixtures of barley and hairy vetch. P2O5 and K2O contents were similar in all green manures. Supplying amount of nitrogen from B, HV and B/HV plot, which were 172 kg ha-1, 193 kg ha-1, and 198 kg ha-1, were higher than amount of basal nitrogen required by soil testing but were lower than that of total nitrogen, respectively. Among the green manure crops, C/N ratio of HV was the lowest at 11.8, showing a similar value to that of expeller cake, but that of B was the highest at 30.6. Total yield was no significant difference in all treatment plots although B/HV plot showed the highest yield, but initial yield in B plot with high C/N ratio was lower than that in EC plot.

Organic-Inorganic Hybrid Materials Technology for Gas Barrier (가스 차단을 위한 유.무기 하이브리드 소재기술)

  • Kim, Ki-Seok;Pa가, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.112-117
    • /
    • 2011
  • Recently, high growth potential of barrier materials industry including high performance packing materials was expected with increasing the national income and well-being culture. As high barrier materials, polymer nanocomposites have considerable attractions due to their excellent physical properties compared to conventional composite materials. In general, polymer nanocomposites were consisted of polymer matrix and inorganic fillers, such as layered silicate, carbon nanotubes, and metal- or inorganic nanoparticles. Among these materials, layered silicate which was called as the clay was usually used as nano-fillers because of naturally abundant and most economical and structural properties. Clay-reinforced polymer nanocomposites have various advantages, such as high strength, flammability, gas barrier property, abrasion resistance, and low shrinkage and used for automotive and packing materials. Therefore, in this paper, we focused on the need of gas barrier materials and materials-related technologies.

Effects of Indirect Wastewater Reuse on Water Quality and Soil Environment in Paddy Fields (간접하수재이용에 따른 논에서의 수질 및 토양환경 영향 분석)

  • Jeong, Han Seok;Park, Ji Hoon;Seong, Choung Hyun;Jang, Tae Il;Kang, Moon Seong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.91-104
    • /
    • 2013
  • The objectives of this study were to monitor and assess the environmental impacts of indirect wastewater reuse on water quality and soil in paddy fields. Yongin monitoring site (YI) irrigated from agricultural reservoir and Osan monitoring site (OS) irrigated with treated wastewater diluted with stream water were selected as control and treatment, respectively. Monitoring results for irrigation water quality showed a significant statistical difference in salinity, exchangeable cation and nutrients. Pond water quality showed a similar tendency with irrigation water except for the decreased difference in nutrients due to the fertilization impact. Soil chemical properties mainly influenced by fertilization activity such as T-N, T-P, and $P_2O_5$ were changed similarly in soil profiles of both monitoring sites, while the properties, EC, Ca, Mg, and Na, mainly effected by irrigation water quality showed a considerable change with time and soil depth in treatment plots. Heavy metal contents in paddy soil of both control and treatment did not exceed the soil contamination warning standards. This study could contribute to suggest the irrigation water quality standards and proper agricultural practices including fertilization for indirect wastewater reuse, although long-term monitoring is needed to get more scientific results.

Mechanical and Impact Properties and Heat Deflection Temperature of Wood Flour-reinforced Recycled Polyethylene Green Composites (목분강화 재활용폴리에틸렌 그린복합재료의 기계적 특성, 충격 특성 및 열변형온도)

  • Lee, Ki-Young;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • Considering of utilizing renewable resources and recycled plastics, green composites consisted of recycled polyethylene (PE) as matrix and eco-friendly natural fibers as reinforcement were processed and characterized in the present study. First, the wood flour/recycled polyethylene pellets with different wood flour contents were prepared by twin-screw extrusion processing. Using the pellets, wood flour/recycled polyethylene green composites were fabricated and the effects of wood flour loading on their flexural, tensile, impact properties, heat deflection temperature and fracture behavior were investigated. It was concluded that the flexural strength, flexural modulus, tensile modulus and heat deflection temperature of wood flour/recycled polyethylene green composites were increased with wood flour, whereas the tensile strength and impact strength were decreased. The fracture behavior observed by means of scanning electron microscopy supported qualitatively the tendency of the impact strength with wood flour loading, compared with the ductile fracture pattern of recycled polyethylene.