• Title/Summary/Keyword: EBPR

Search Result 31, Processing Time 0.025 seconds

On-line Diagnosis System with Learning Bayesian Networks for fsEBPR

  • Cheon, Seong-Pyo;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.279-284
    • /
    • 2007
  • Nowadays, due to development of automatic control devices and various sensors, one operator can freely handle several remote plants and processes. Automatic diagnosis and warning systems have been adopted in various fields, in order to prepare an operator's absence for patrolling plants. In this paper, a Bayesian networks based on-line diagnosis system is proposed for a wastewater treatment process. Especially, the suggested system is included learning structure, which can continuosly update conditional probabilities in the networks. To evaluate performance of proposed model, we made a lab-scale five-stage step-feed enhanced biological phosphorous removal process plant and applied on-line diagnosis system to this plant in the summer.

Nitrongen and Phosphorus Removal using Elutriated Acids of Food Waste as an External Carbon Source in SBR (음식물쓰레기 세정산발효액을 외부탄소원으로 주입한 SBR 공정에서 질소 및 인 제거)

  • Kwon, Koo-ho;Kim, Si-won;Lee, Min-jae;Min, Kyung-sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.462-467
    • /
    • 2006
  • An improvement of nitrogen and phosphorus removal in SBR using the elutriated acids from the food waste as an external carbon source was investigated in this study. The food waste was elutriated at $35^{\circ}C$ and pH 9 to produce the external carbon source. The elutriate of food waste were continuously collected. The elutriated liquid contained VFAs of 39,180 mg/L representing soluble COD of 44,700 mg/L. The SBR showed poor denitrification and EBPR (enhanced biological phosphorus removal) without elutriated VFAs addition. An average denitrification rate was 0.4 mg NOx-N/g MLVSS/day. In turn, EBPR was also inhibited by this poor denitrification because the remaining nitrate in anaerobic phase resulting a poor denitrification. On the other hand, the denitrification in anoxic phase significantly improved with an elutriated VFAs addition. Nitrate removal was 82% while the denitrification rate was 2.9 mg NOx-N/g MLVSS/day with 18.4 mL/cycle of elutriated VFAs. With the enhanced denitrification, nitrate concentration in anaerobic phase could effectively be controlled to a very low level. The elimination of nitrate inhibition in anaerobic phase resulted enhancement of EBPR. The specific phosphate release rate was $1.9mg\;PO_4^{3-}-P/g\; MLVSS/day$ with less than 0.5 mg/L of $PO_4^{3-}-P$ concentration.

Evaluation of the COD Fractionation Capability Using Storage Microorganism from EBPR Process (EBPR 공정내 저장 미생물을 이용한 유입수 분율 분석능 평가)

  • Kim, Youn-Kwon;Seo, In-Seok;Kim, Hong-Suck;Kim, Ji-Yeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.25-31
    • /
    • 2004
  • In conventional activated sludge process, COD fractions in wastewater are important parameters, significantly. Depending on characteristics of influent COD fractionation, activated sludge process requires a major change of a process operation to ensure meeting a stricter standards. In order to validate and evaluate the accuracy of the traditional COD fractionation methodologies, readily and slowly biodegradable COD was mixed using glucose and peptone as a sole carbon source in a synthetic wastewater, respectively. In this research, prediction of the COD fraction was made using the OUR(Oxygen Utilization Rate) and the NUR(Nitrate Utilization Rate) experiments. The result showed that COD fractions calculated by OUR experiment were similar to the composition of synthetic wastewater. On the other hand, it was found that an error was generated during the NUR experiment. This error was due to the intracellular storage period for storage microorganisms such as PAOs, and the error in COD fraction was observed about 8-14 % in terms of Total COD.

  • PDF

Analysis of Microbial Communities Using Culture-dependent and Culture-independent Approaches in an Anaerobic/Aerobic SBR Reactor

  • Lu Shipeng;Park Min-Jeong;Ro Hyeon-Su;Lee Dae-Sung;Park Woo-Jun;Jeon Che-Ok
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.155-161
    • /
    • 2006
  • Comparative analysis of microbial communities in a sequencing batch reactor which performed enhanced biological phosphorus removal (EBPR) was carried out using a cultivation-based technique and 16S rRNA gene clone libraries. A standard PCR protocol and a modified PCR protocol with low PCR cycle was applied to the two clone libraries of the 16S rRNA gene sequences obtained from EBPR sludge, respectively, and the resulting 424 clones were analyzed using restriction fragment length polymorphisms (RFLPs) on 16S rRNA gene inserts. Comparison of two clone libraries showed that the modified PCR protocol decreased the incidence of distinct fragment patterns from about 63 % (137 of 217) in the standard PCR method to about 34 % (70 of 207) under the modified protocol, suggesting that just a low level of PCR cycling (5 cycles after 15 cycles) can significantly reduce the formation of chimeric DNA in the final PCR products. Phylogenetic analysis of 81 groups with distinct RFLP patterns that were obtained using the modified PCR method revealed that the clones were affiliated with at least 11 phyla or classes of the domain Bacteria. However, the analyses of 327 colonies, which were grouped into just 41 distinct types by RFLP analysis, showed that they could be classified into five major bacterial lineages: ${\alpha},\;{\beta},\;{\gamma}-$ Proteobacteria, Actinobacteria, and the phylum Bacteroidetes, which indicated that the microbial community yielded from the cultivation-based method was still much simpler than that yielded from the PCR-based molecular method. In this study, the discrepancy observed between the communities obtained from PCR-based and cultivation-based methods seems to result from low culturabilities of bacteria or PCR bias even though modified culture and PCR methods were used. Therefore, continuous development of PCR protocol and cultivation techniques is needed to reduce this discrepancy.

The Nutrient Removal of Mixed Wastewater composed of Sewage and Stable Wastewater using SBR (SBR을 이용한 하수와 우사폐수로 구성된 혼합폐수의 영양소 제거)

  • 김홍태
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.617-623
    • /
    • 1999
  • This study was carried out to obtain the optimal operating parameter on organic matters and nutrient removal of mixed wastewater which was composed of sewage and stable wastewater using SBR. A laboratory scale SBR was operated with An/Ae(Anaerobic/Aerobic) ratio of 3/3, 2/4 and 4/2(3.5/2.5) at organic loading rate of 0.14 to 0.27 kgBOD/$m^3$/d. TCOD/SCOD ratio of mixed wastewater was 3, so the important operating factor depended upon the resolving the particulate parts of wastewater. Conclusions of this study were as follows: 1) For mixed wastewater, BOD and COD removal efficiencies were 93-96% and 85-89%, respectively. It was not related to each organic loading rate, whereas depended on An/Ae ratio. During Anarobic period, the amount of SCOD consumption was very little, because ICOD in influent was converted to SCOD by hydrolysis of insoluble matter. 2) T-N removal efficiencies of mixed wastewater were 55-62% for Exp. 1, 66-76% for Exp. 2, and 67-81% for Exp. 3, respectively. It was found that nitrification rate was increased according to organic concentration in influent increased. Therefore, the nitrification rate seemed to be achieved by heterotrophs. During anoxic period, denitrification rate depended on SCOD concentration in aerobic period and thus, was not resulted by endogenous denitrification. However, the amount of denitrification during anaerobic period were 3.5-14.1 mg/cycle, and that of BOD consumed were 10-40 mg/cycle. 3) For P removal of mixed wastewater, EBPR appeared only Mode 3($3^*$). It was found that the time in which ICOD was converted to VFA should be sufficient. For mode 3 in each Exp., P removal efficiencies were 74, 87, and 81%, respectively. But for 45-48 of COD/TP ratio in influent, P concentration in effluent was over 1 mg/L. It was caused to a large amount of ICOD in influent. However, as P concnetration in influent was increased, the amounts of P release and uptake were increased linearly.

  • PDF

Nutrient Removal Characteristics by the Addition Ratio of BNR Sludge in SBR (SBR에서 BNR 슬러지 식종비에 따른 영양염류 제거 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • Biological nutrient removal (BNR) sludge was added to a sequencing batch reactor (SBR) in the addition ratios of 0%, 20%, 40%, 50% while observing the variation of nutrient removal characteristics and microorganism groups. When the BNR sludge was added in a ratio over 40%, the characteristics of EBPR (enhanced biological phosphorus removal) was shown at the 27 days. However, a distinct BNR was not shown when the addition ratio of BNR sludge was lower than 40%. The organic removal efficiency were shown as 90% in all SBRs irrespective of the addition ratio of BNR sludge. At the 27 days, the phosphorus removal efficiencies were shown as 40%, 55%, 77% and 69%, respectively, according to the addition ratio of BNR sludge. Overall, efficient nitrification and phosphorus removal was shown when the added BNR sludge ratio was over 40%.

포기 시간 변경에 따른 SBR의 영양염류 제거 특성과 MLVSS에 관한 연구

  • Jeong, No-Seong;Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.383-389
    • /
    • 2007
  • 호기시간 변경에 따른 SBR에서의 영양염류제거특성과 MLVSS의 변화를 본 이번 연구에서는 다음과 같은 결론을 얻었다. 1) 충분하지 못한 산소의 공급은 미생물의 wash-out으로 인한 영양염류 제거 효율의 저조를 나타냈다. 2) 산소 공급량이 $0.045m^3$였던 R2에서 저조산 질산화가 나타났으나, 인을 과다 축적하는 EBPR(Enhanced Biological Phosphorus Removal)을 나타냈다. 3) 산소 공급량이 $0.06m^3$이상이었던 R3, R4에서는 60%이상의 질산화 및 탈질화와 약 100%에 달하는 인 제거 효율을 나타내었다. 4) 단위 미생물당 $1.5{\sim}1.8ml/mg$의 공급 산소량이 인 흡수에 유리한 것으로 나타났다. 5) 공급되는 산소에 있어 유기물 분해>인흡수>질산화에 우선적으로 소모되는 것으로 나타났다.

  • PDF

Removal of Phosphorus in Aerobic Fixed Biofilm Reactor (호기성 고정생물막 반응조에서 인의 제거)

  • Rim, Jay-Myoung;Han, Dong-Joon;Woo, Young-Gug
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.5-11
    • /
    • 1996
  • While the enhanced biological phosphorus removal(EBPR), in anaerobic/aerobic condition, was known to remove phosphorus by means of metabolism of poly-P microorganisms, the phosphorus removed could be released in the form of ortho-P in the aerobic fixed biofilm reactor. This study was initiated to investigate the cause of ortho-P release in the aerobic fixed biofilm reactor. The resutls indicated that the phosphorus release was caused by autooxidation. The synthesis and release of phosphrous were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was $0.023mgP_{syn}/mgCOD_{rem}$. The phosprous contents of the microorganism were 4.3 ~ 6.0% on a dry weight basis.

  • PDF

Phylogenetic Analysis of Bacterial Diversity of Enhanced Biological Phosphorus Removal Activated Sludge by Isolation and Cloning of 16S rDNA

  • Nakamura, Kazunori;Hanada, Satoshi;Kamagata, Yoichi;Kawaharasaki, Mamoru
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.10a
    • /
    • pp.109-117
    • /
    • 2000
  • Bacterial community structure composing enhanced biological phosphorus removal (EBPR) activated sludge was analyzed phylogenetically by cloning 165 rDNA after direct DNA extraction. Then, this result was compared with 165 rDNA sequences of randomly isolated bacterial species. The results clearly showed that there are no coincidence between the sequences retrieved directly from activated sludge and those of isolated strains, suggesting that many important bacteria are hidden in activated sludge because of the difficulty in isolation and culture of them.

  • PDF

생물학적 인 제거용 연속회분식 반응기에서의 미생물 분포 조사

  • Jeon, Che-Ok;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.77-80
    • /
    • 2000
  • Various analytical methods such as electron microscopy, quinone analysis, and 16S rDNA sequencing studies were used to investigate the microbial communities and to identify the microorganisms responsible for enhanced biological phosphorus removal (EBPR) in an anaerobic/aerobic sequencing batch reactor (SBR) fed with acetate. Electron photomicrographs showed that oval-shaped microorganisms of about $0.7\;{\sim}\;1\;{\mu}m$ in diameter dominated the microbial sludge. These microorganisms contained polyphosphate granules and glycogen inclusions, which suggests that they are a kind of phosphorus accumulating organism. Quinone and 16S rRNA sequence analyses showed that the members of Proteobacteria beta subclass were the most abundant species, which were affiliated with the Rhodocyclus-likes group. Phylogenetic analysis revealed that the two dominating clones of the beta subclass were most distantly related to Propionivibrio dicarboxylicus DSM 5885 and Rhodocyclus tenuis DSM 109 with about 95% and 96% sequence similarity, respectively. Therefore, it was concluded that the oval-shaped organisms related to the Rhodocyclus-likes group are likely to be responsible for biological phosphorus removal in SBR operation supplied with acetate.

  • PDF