• Title/Summary/Keyword: EAHES

Search Result 2, Processing Time 0.018 seconds

A Experimental Study of Horizontal Geothermal Heat Exchanger System about Total Enthalpy Change (수평형 지중열교환기의 전열량 변화에 대한 실험적 연구)

  • Cho, SungWoo;Ihm, PyeongChan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • This paper is performed to investigate of cooling effect and total enthalpy variation on EAHES(Earth-to-Air Heat Exchanger System) that is buried 3m depth and 60m length. Using EAHES, the reduction of the sensible heat is obviously but latent heat is showed increased trend. Although the outdoor average latent heat accounts for 53.2% of total enthalpy, latent heat of the exit air from EAHES was raised as 58%. For improving cooling effect of EAHES, it has to considered that how to remove the latent heat from EAHES.

A Study on Burial Guideline of Horizontal Geothermal Heat Exchanger based on Exit Temperature (출구 온도를 고려한 수평형 지중열교환기의 매설 지침에 관한 연구)

  • Cho, Sung-Woo;Ihm, Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.553-558
    • /
    • 2014
  • Geothermal energy can be used with a geothermal heat pump or an earth-to-air heat exchange system (EAHES), which is referred to as a "cooling tube" in Korea. In this study, we suggest EAHES burial guidelines in terms of the parameters of buried pipe length and air velocity regarding the exit air temperature of EAHES. The exit air temperature for EAHES in three regions (Changwon, Busan and Seoul) was calculated with variation in buried pipe length and air velocity at ${\Phi}100mm$ and ${\Phi}200mm$. In conclusion, variation in the buried pipe length is more effective than that of air velocity to achieve the required exit air temperature.