• Title/Summary/Keyword: EAF-Slag

Search Result 48, Processing Time 0.026 seconds

Desulfurization Reaction according to Ladle Slag Recycling Method in Shaft-Type EAF Operation (Shaft형 전기로 공정에서 ladle 슬래그 재활용 방법에 따른 탈황반응)

  • Jung-Min Yoo
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.46-53
    • /
    • 2024
  • The residual heat and high CaO content present in the slag remaining in the ladle after the completion of continuous casting in the electric arc furnace (EAF) steelmaking process have been utilized to reduce power consumption and lime usage in the ladle furnace (LF) process. However, if the timing of such processes does not align with the LF and continuous casting operations, the recycling rate will decrease. To increase the slag recycling rate, the effect of ladle slag recycling methods, specifically pouring ladle slag into the slag pot in advance for subsequent recycling, on LF operations was analyzed. The slag liquefaction rate was calculated using the thermodynamic program Factsage 8.3 for ladle molten slag recycling methods. By applying each of the 10 heats operations for the ladle slag recycling methods, the desulfurization ability and LF operation performance were compared. It was found that when slag was immediately recycled into the ladle after continuous casting was completed, power consumption decreased by 0.3 MWh, LF operation time was shortened by 1.2 minutes, and the desulfurization rate increased by 5.8%.

A Study on the Replacement of a Light Burnt Dolomite with a Waste MgO-C Refractory Material for a Steel-Making Flux in Electric Arc Furnace (폐 MgO-C계 내화재의 전기로(EAF) 제강 Flux용 경소돌로마이트 대체 사용 연구)

  • Hyun-Jong Kim;Jong-Deok Lim;Hang-Goo Kim;Jei-Pil Wang
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.44-51
    • /
    • 2022
  • In the steelmaking process using an electric arc furnace (EAF), light-burnt dolomite, which is a flux containing MgO, is used to protect refractory materials and improve desulfurization ability. Furthermore, a recarburizing agent is added to reduce energy consumption via slag foaming and to induce the deoxidation effect. Herein, a waste MgO-C based refractory material was used to achieve the aforementioned effects economically. The waste MgO-C refractory materials contain a significant amount of MgO and graphite components; however, most of these materials are currently discarded instead of being recycled. The mass recycling of waste MgO-C refractory materials would be achievable if their applicability as a flux for steelmaking is proven. Therefore, experiments were performed using a target composition range similar to the commercial EAF slag composition. A pre-melted base slag was prepared by mixing SiO2, Al2O3, and FeO in an alumina crucible and heating at 1450℃ for 1 h or more. Subsequently, a mixed flux #2 (a mixture of light-burnt dolomite, waste MgO-C based refractory material, and limestone) was added to the prepared pre-melted base slag and a melting reaction test was performed. Injecting the pre-melted base slag with the flux facilitates the formation of the target EAF slag. These results were compared with that of mixed flux #1 (a mixture of light-burnt dolomite and limestone), which is a conventional steelmaking flux, and the possibility of replacement was evaluated. To obtain a reliable evaluation, characterization techniques like X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) spectrometry were used, and slag foam height, slag basicity, and Fe recovery were calculated.

RECOVERY OF METALS FROM EAF DUST WITH RAPID SYSTEM

  • Shin, Hyoung-ky;Moon, Seok-min;Jhung, Sung-sil
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.381-386
    • /
    • 2001
  • The dust generated from the electric arc furnace steel making process is classified as hazardous material by Korean Environmental Protection Acts, mainly because of the existence of water teachable Pb, Zn and Cd. Thus the treatment of EAF dust is being carried out to fulfill both the environmental aspect and recovery of valuable metals. To establish the proper process for recovering the valuable metals (Fe, Zn, Pb and Cd) and producing the non-toxic slag from EAF dust, using RAPID-10 system, feasibility study have been carried out. To find out the scale-up factor for designing the commercial scale EAF dust treatment process(capacity 50,000 ton EAF dust per year) entitled RAPID-50 system. The design and construction of RAPID-50 (RIST Arc Plasma Industrial Device) system for treating 50,000 ton of EAF dust per year is now undergoing. Overall plan for treating EAF dust generated in KOREA will be setup after successful operation (December, 2002) of RAPID-50 system.

  • PDF

The Direct Recycling of Electric Arc Furnace Stainless Steelmaking Dust

  • Zhang, Chuanfu;Peng, Bing;Peng, Ji;Lobel, Jonathan;Kozinski, Janusz A.
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.404-408
    • /
    • 2001
  • This paper focuses on the pilot-scale investigation of direct recycling of electric arc furnace (EAF) stainless steelmaking dust. The direct recycling of EAF dust is to make pellets with the mixture of the dust and the reducing agent carbon, then introduce the pellets to the EAF. The valuable metals in the dust are reduced and get into the steel as the alloying elements. Experiments simulating direct recycling in an EAF were performed using an induction furnace. But it seems difficult to reduce all metal oxides in the dust so that some metal reducing agents added in the late stage of reduction process. The valuable metals in the dust were reduced partly by carbon and partly by metal reducing agent for the economical concern. The recovery of iron, chromium and nickel from the flue dust and the amount of metal oxides in the slag were measured. The results showed that the direct recycling of EAF stainless steelmaking dust is practicable. It wes also found that direct recycling of flue EAF stainless steelmaking dusts does not affect the chemistry and quality of stainless steel produced in the EAF. It is benefit not only for the environmental protection but also for the recovery of valuable metal resources in this way.

  • PDF

Basic Study on the Recycling of a Waste MgO-C Refractory Material as a Flux for EAF Steelmaking (전기로 폐 MgO-C계 내화재의 제강원료 활용 가능성 연구)

  • Wang, Jei-Pil;Kim, Hang-Goo;Go, Min-Seok;Lee, Dong-Hun
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.53-60
    • /
    • 2021
  • In EAF steelmaking industries, MgO content in slag increases due to the addition of dolomite flux to protect refractory lines of furnaces and improve the desulfurization capability of slag. In addition, coal powder is injected in the molten steel bath to increase the energy efficiency of the process. In this regard, the utilization of waste MgO-C refractory material as a flux was examined because it has high amounts of MgO (>70%) and graphite carbon (>10%). A series of experiments were carried out using industrial EAF slag with added light burnt dolomite and waste MgO refractory material from a Korean steel company. The results for the addition of the two fluxes were similar in terms of slag basicity; therefore, it is expected that waste MgO-C refractory material can successfully replace dolomite flux. In addition, when the waste MgO-C refractory material was added as flux, slag foaming phenomenon was demonstrated because of the reaction between the graphite from the refractory material and iron oxides in the slag.

Status of EAF Dust Management in Taiwan (대만(臺灣)의 EAF 더스트(전기로(電氣爐) 제강소진(製鋼紹塵))의 처리(處理)에 관하여)

  • Chen, Wei-Sheng;Chou, Wei-Shan;Tsai, Min-Shing
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.3-13
    • /
    • 2011
  • Taiwan's annual steel production reached 21.29 million tons. EAF accounted for about half of this total, or 11.2 million tons in 2008. The other 10.09 million tons came from blast furnace and converter process methods. The annual EAF carbon steel production is about 9.76 million tons, and the quantity of dust generated from the EAF process is 160 thousand tons, or about 16kg of dust per ton of steel was produced. In 2009, there is Walez process for carbon steel EAF dust recycling, and the capacity is about 70,000 tons per year; and there is RHF/SAF process for stainless steel EAF dust, the capacity is 60,000 tons per year which is enough to treat stainless steel EAF dust in Taiwan. There are many new treatment facilities processes will be that introduced to recycle the EAF dust in the near future, these processes will perform smoothly and successfully in Taiwan. The estimation of recycled crude ZnO is about 90,000 tons each year. The recycling and upgrading crude zinc oxide will be the next important issue in Taiwn zinc and steel industry.

A Study on the Recycling of Molten Ladle Slag Residue into LF Process (Ladle내 잔류(殘留) 용융(熔融)슬래그의 LF 공정(工程)으로 재활용(再活用)에 관한 연구(硏究))

  • Kim, Young-Hwan;Yoo, Jung-Min;Kim, Dong-Sik;Lim, Jong-Hoon;Yang, Sung-Ho
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • LF slag is formed by EAF carryover slag and slag former(such as lime, dolomite) put into the ladle during the tapping molten metal. After LF process, continuous casting is started when molten steel is sent from ladle to tundish through bottom nozzle of ladle. Conventionally, remained molten slag and steel in ladle are poured into a slag port and they are transferred to a slag yard and then recycled. In this study, we investigated about recycling of molten LF slag residue(including Fe residue to reuse) which is made in steelmaking process. As a result, lime usage was decreased about 2.2~3.2 kg/steel-ton and also molten steel yield rate was increased about 0.3 ~ 0.5 percent point.

Study on the Reduction of Molten EAF Slag (용융 전기로 슬래그의 환원반응에 관한 연구)

  • Joo, Seong-Woong;Shin, Jong-Dae;Shin, Dong-Kyung;Hong, Seong-Hun;Ki, Jun-Sung;Hwang, Jin-Il;You, Byung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.753-761
    • /
    • 2012
  • The reduction behavior of low level oxides such as (T.Fe), (MnO) and ($P_2O_5$) in molten EAF slag was investigated using commercial reductants. In an air atmosphere, the slag volume increased and the reduction rate of the slag was very low due to the oxidation loss of reductants by oxygen in the air. The reduction rate of the slag was also low when a commercial reductant was used alone in an Ar gas atmosphere. The reason is probably because the material transfer through the interface between the slag and reductant is difficult due to the formation of high melting point oxide. When reductants were mixed with burnt lime in order to form low melting point reaction products, the reduction rate of the slag increased up to the range of 45-70%. By using the mixtures of reductants and burnt lime so as to form a low melting point slag at the reaction end, the reduction rate of the slag was improved up to 60-85%.

A Study on the Resistance of Chemical Attack of Mortar Using the Electric Arc Furnace Slag as Fine Aggregate (전기로슬래그 잔골재를 사용한 모르터의 약품저항성에 대한 연구)

  • 문한영;유정훈;윤희경;이재준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.303-306
    • /
    • 1997
  • In this paper, we carried out the fundamental experiments on the resistance of chemical attack of mortar using the electric arc furnace slag as fine aggregate. The mortar specimens made from the electric arc furnace slag (EAF slag) as fine aggregate were immersed in artificial seawater and two sorts of chemical solutions, and measured to investigate the change of compressive strength and weight.

  • PDF