• Title/Summary/Keyword: E3 SUMO ligase

Search Result 8, Processing Time 0.023 seconds

Characterization of small ubiquitin-like modifier E3 ligase, OsSIZ1, mutant in rice (벼의 small ubiquitin-like modifier E3 ligase, OsSIZ1 돌연변이체의 특성 분석)

  • Park, Hyeong Cheol;Koo, Sung Cheol;Kim, Hun;Choi, Wonkyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.235-241
    • /
    • 2012
  • Sumoylation is a reversible conjugation process that attaches the small ubiquitin modifier (SUMO) peptide to target proteins and regulates a wide variety of cellular functions in eucaryotes. As final step of the sumoylation, SUMO E3 ligases facilitate conjugation of SUMO to target proteins. To characterize the functions of the SUMO E3 ligases in Oryza sativa, we isolated a single recessive rice SUMO E3 ligase, Ossiz1-2 mutant. In addition, we also confirmed the interaction between OsSIZ1/-2 and OsSUMO1, respectively, by using an Agrobacterium-based tobacco luciferase transient expression system. Ossiz1-2 mutant exhibited approximately 20% reduction in growth and developmental units compared with wild type. Especially, number of filled seeds and total seed weight were dramatically decreased in the Ossiz1-2 mutant rice. Thus, these results suggest that sumoylation by the OsSIZ1 as SUMO E3 ligase plays an important role in regulating growth and development in rice.

Arabidopsis SIZ1 positively regulates alternative respiratory bypass pathways

  • Park, Bong-Soo;Kim, Sung-Il;Song, Jong-Tae;Seo, Hak-Soo
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.342-347
    • /
    • 2012
  • Plant mitochondria possess alternative respiratory pathways mediated by the type II NAD(P)H dehydrogenases and alternative oxidases. Here, E3 SUMO ligase was shown to regulate alternative respiratory pathways and to participate in the maintenance of carbon and nitrogen balance in Arabidopsis. The transcript abundance of the type II NAD(P)H dehydrogenases NDA2 and NDB2 and alternative oxidases AOX1a and AOX1d genes was low in siz1-2 mutants compared to that in wild-type. The addition of nitrate or ammonium resulted in a decrease or an increase in the expression of the same gene families, respectively, in both wild-type and siz1-2 mutants. The amount of free sugar (glucose, fructose and sucrose) was lower in siz1-2 mutants than that in wild-type. These results indicate that low nitrate reductase activity due to the AtSIZ1 mutation is correlated with an overall decrease in alternative respiration and with a low carbohydrate content to maintain the carbon to nitrogen ratio in siz1-2 mutants.

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

Differential Display Analysis of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Identified Induction of Ras-related Nuclear Protein Binding Protein2 (RanBP2) Gene

  • Kim, Dong-Hak;Lim, Young-Ran;Park, Hyoung-Goo;Kim, Beom-Joon;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and related halogenated aromatic hydrocarbons elicit a diverse spectrum of biochemical and toxic responses in laboratory animals and mammalian cells in culture. Toxicity and carcinogenicity of TCDD is well established but the molecular mechanism is still poorly understood. Here, we found the noble responsive genes to TCDD using the differential display analysis. Treatment of HepG2 cells with TCDD showed a significantly different mRNA expression pattern from the untreated cells in differential display analysis. The differentially displayed bands were isolated and used as probes in dot blot and Northern blot analyses. Of thirty-five isolated differentially displayed bands, only two bands were confirmed as positive in dot blot and Northern blot analyses. The nucleotides sequences of these clones were analyzed and the search of Genebank database revealed that one clone is highly homologous with RanBP2 (Ras-related nuclear protein binding protein2; 92%) and the other is an unknown gene. RanBP2 is a nucleoporin with SUMO E3 ligase activity that functions in both nucleocytoplasmic transport and mitosis and its role as a novel tumor suppressor has been recently proposed. Thus, these results may suggest the clue elucidating the toxic mechanism of TCDD through RanBP2.

Characterization of SID2 that is required for the production of salicylic acid by using β-GLUCURONIDASE and LUCIFERASE reporter system in Arabidoposis (리포트 시스템을 이용한 살리실산 생합성 유전자 SID2의 발현 해석)

  • Hong, Mi-Ju;Cheong, Mi-Sun;Lee, Ji-Young;Kim, Hun;Jeong, Jae-Cheol;Shen, Mingzhe;Ali, Zahir;Park, Bo-Kyung;Choi, Won-Kyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Salicylic acid(SA) is a phytohormone that is related to plant defense mechanism. The SA accumulation is triggered by abiotic and biotic stresses. SA acts as a signal molecular compound mediating systemic acquired resistance and hypersensitive response in plant. Although the role of SA has been studied extensively, an understanding of the SA regulatory mechanism is still lacking in plants. In order to comprehend SA regulatory mechanism, we have been transformed with a SID2 promoter:GUS::LUC fusion construct into siz1-2 mutant and wild plant(Col-0). SIZ1 encodes SUMO E3 ligase and negatively regulates SA accumulation in plants. SID2(SALICYLIC ACID INDUCTION DEFICIENT2) is a crucial enzyme of SA biosynthesis. The Arabidopsis SID2 gene encodes isochorismate synthase(ICS) that controls SA level by conversion of chorismate to isochorismate. We compared the regulation of SID2 in wild-type and siz1-2 transgenic plants that express SID2 promoter:GUS::LUC constructs respectively. The expressions of $\beta$-GLUCURONIDASE and LUCIFERASE were higher in siz 1-2 transgenic plant without any stress treatment. SID2 promoter:GUS::LUC/siz1-2 transgenic plant will be used as a starting material for isolation of siz1-2 suppressor mutants and genes involved in SA-mediated stress signaling pathway.