• Title/Summary/Keyword: E2 envelope protein

Search Result 26, Processing Time 0.02 seconds

Expression of the E. coli LacZ Gene in Chicken Embryos Using Replication Defective Retroviral Vectors Packaged With Vesicular Stomatitis Virus G Glycoprotein Envelopes

  • Kim, Teoan;Lee, Young Man;Lee, Hoon Taek;Heo, Young Tae;Yom, Heng-Cherl;Kwon, Mo Sun;Koo, Bon Chul;Whang, Key;Roh, Kwang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2001
  • Despite the high potency of the retrovirus vector system in gene transfer, one of the main drawbacks of has been difficulty in preparing highly concentrated virus stock. Numerous efforts to boost the virus titer have ended in unsatisfactory results mainly due to fragile property of retrovirus envelope protein. In this study, to overcome this problem, we constructed our own retrovirus vector system producing vector viruses encapsulated with VSV-G (vesicular stomatitis virus G glycoprotein). Concentration process of the virus stock by ultracentrifuge did not sacrifice the virus infectivity, resulting in more than 108 to 109 CFU (colony forming unit) per ml on most of the target cell lines tested. Application of this high-titer retrovirus vector system was tested on chicken embryos. Injection of virus stock beneath the blastoderms of pre-incubated fertilized eggs resulted in chick embryos expressing E. coli LacZ gene with 100% efficiency. Therefore, our results suggest that it is possible to transfer the foreign gene into chicken embryo using our high-titer retrovirus vector.

Close Relationship Between SARS-Coronavirus and Group 2 Coronavirus

  • Kim, Ok-Ju;Lee, Dong-Hun;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.83-91
    • /
    • 2006
  • The sudden appearance and potential lethality of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in humans has resulted in a focusing of new attention on the determination of both its origins and evolution. The relationship existing between SARS-CoV and other groups of coronaviruses was determined via analyses of phylogenetic trees and comparative genomic analyses of the coronavirus genes: polymerase (Orflab), spike (S), envelope (E), membrane (M) and nucleocapsid (N). Although the coronaviruses are traditionally classed into 3 groups, with SARS-CoV forming a $4^{th}$ group, the phylogenetic position and origins of SARS-CoV remain a matter of some controversy. Thus, we conducted extensive phylogeneitc analyses of the genes common to all coronavirus groups, using the Neighbor-joining, Maximum-likelihood, and Bayesian methods. Our data evidenced largely identical topology for all of the obtained phylogenetic trees, thus supporting the hypothesis that the relationship existing between SARS-CoV and group 2 coronavirus is a monophyletic one. Additional comparative genomic studies, including sequence similarity and protein secondary structure analyses, suggested that SARS-Co V may bear a closer relationship with group 2 than with the other coronavirus groups. Although our data strongly suggest that group 2 coronaviruses are most closely related with SARS-CoV, further and more detailed analyses may provide us with an increased amount of information regarding the origins and evolution of the coronaviruses, most notably SARS-CoV.

The Epitope Recognized by Monoclonal Antibody 2B6 in the B/C Domains of Classical Swine Fever Virus Glycoprotein E2 Affects Viral Binding to Hyperimmune Sera and Replication

  • Tong, Chao;Chen, Ning;Liao, Xun;Xie, Wenqi;Li, Dejiang;Li, Xiaoliang;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.537-546
    • /
    • 2015
  • Classical swine fever (CSF) is a highly contagious disease of pigs caused by CSF virus (CSFV). E2 is the major viral envelope protein of immune dominance that induces neutralizing antibodies and confers protection against CSFV infection. The B/C domains of E2 are variable among CSFV isolates, which could affect immunogenicity and binding to antibodies. We attempted to characterize the epitope recognized by a monoclonal antibody 2B6 (mAb-2B6) raised against the E2 B/C domains of the vaccine C-strain and to examine if mutations in the epitope region would affect antibody binding and viral neutralization. The epitope specific for mAb-2B6 recognition is linear, spanning five residues 774DGXNP778 in the B/C domains. The residue N777 is indispensable for the specificity. The epitope exists only in group 1 strains, but not in those of group 2. The recombinant viruses containing individual mutations on the epitope region lost the reactivity to mAb-2B6. The mutant virus RecC-N777S had low replication potential, about 10-fold decrease in the yield of progeny virus particles, whereas the mutant virus RecC-P778A reverted to proline upon continuous passaging. The mutations on the mAb-2B6 epitope region did not affect neutralization by anti-C-strain polyclonal sera from pigs. Deletion from aa774 covering the mAb-2B6 epitope, but not that from aa781, also affected binding with the polyclonal antibodies from vaccinated pigs, although the major binding region for the vaccinated antibodies is aa690-773.

Retrovirus Vector-Mediated Inductional Expression of the Human Lactadherin Gene in Mouse Mammary Epithelial Cells (Mouse Mammary Epithelial Cell에서 Retrovirus Vector를 이용한 Human Lactadherin 유전자의 유도적 발현)

  • 권모선;구본철;정병현;염행철;박창식;김태완
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinomas and may prevent symptomatic rotavirus infections. In this study, under the control of tissue specific and hormonal inducible mouse whey acidic protein (WAP) promote., the expression pattern of lactadherin (Ltd) in lactogenic hormone-dependent mouse mammary epithelial cell line HC11 were tested. pLNWLtd construct containing 2.4 kilobases of the WAP promoter and 1.5 kilobases of human lactadherin gene was stably transfered into HC11 cells using retroviral vector system. Integration and expression level of the transgene was estimated using PCR and RT-PCR, respectively. Prominent induction of Ltd gene under the WAP promoter was accomplished in the presence of insulin, hydrocortisone and prolactin. Compared to the control (cells cultured with insulin alone), however we observed that the WAP promoter was leaky. These data indicate that luther studies are needed in finding an appropriate promoter other than WAP promoter because of its leakiness.

Molecular Cloning and Expression of a Gene for Outer Membrane Protein H in Pasteurella multocida (A:3) : Production of Antisera against the OmpH (파스튜렐라 (A:3)외막 단백질 H의 유전자 클론닝$\cdot$발현 및 면역혈청 생산)

  • Kim Younghwan;Hwang Heon;Lee Sukchan;Park Eun-Seok;Yoo Sun-Dong;Lee Jeongmin;Yang Joo-Sung;Kwon MooSik
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 2005
  • Pasteurella multocida is known to cause widespread infections in husbandry. To induce homologous and heterologous immunity against the infections, outer membrane proteins (OMPs) in the envelope of P. multocida are thought to be attractive vaccine candidates. Outer membrane protein H is considered as the major component of OMPs. In this study, a gene for OmpH was isolated from pathogenic P. multocida serogroup A. The gene was composed of 1,047 nucleotides coding 348 amino acids with signal peptide of 20 amino acids. The amino acid composition showed about 80 to 98 per cent sequence homologies among other 10 strains of P. multocida serogroup A, reported so far. A recombinant ompH, from which signal peptide was truncated, was generated using pRSET A to name 'pRSET A/OmpH-F2'. The pRSET A/OmpH-F2 was well expressed in E. coli BL21(DE3). The truncated OmpH was purified using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Its molecular weight was registered to be 40 kDa on SDS-PAGE gel. In order to generate immunesera against the OmpH, 50 ug of the protein was intraperitoneally injected into mice three times. The anti-OmpH immuneserum recognized about $5{\times}10^{-2}$ng quantity of the purified OmpH. It can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (Serogroup A).

Immunological Detection of Cytosolic Immature and Plastidial Mature EPSP-synthase after Glyphosate Treatment in Tomato(Lycopersicon esculentum) Apical Meristem (Glyphosate 처리후 토마토 정단부 세포질과 원형 엽록체에서 immature 및 mature EPSP-synthase의 면역학적 검정)

  • Kim, T.W.;Heinrich, Georgr;Kim, T.H.
    • Korean Journal of Weed Science
    • /
    • v.17 no.1
    • /
    • pp.44-51
    • /
    • 1997
  • Glyphosate had no effect on 5-enolpyruvylshikimate-3-phosphate synthase(EPSP-synthase) biosynthesis per se. But it inhibited clealy the activity of EPSP-synthase. EPSP-synthase seemed to be synthesized as a higher molecular weight(54 kDa) presusor protein and to be transported into plastid. The apparent molecular weight of mature EPSP-synthase in plastid is 45 kDa. Thus, the molecular size of transit peptide appeared to be about 9 kDa. The etiolation for 48 h after glyphosate application did not exhibit the inhibition of translocating level of EPSP-synthase across chloroplast envelope in actively growing meristematic leaves. But even when the plants were etiolated 2 hr after glyphosate treatment, a complete inhibition did not occur at least within 12 hr, i.e. 2 hr after beginning light period, suggesting that EPSP-synthase biosynthesis appeared to be not completely light dependent and the level of EPSP-synthase translocation to chloroplast could be controlled by an unknown regulatory mechanism of light dependent herbicidal effect of glyphosate.

  • PDF