• Title/Summary/Keyword: E2 and E1cb mechanisms

Search Result 2, Processing Time 0.02 seconds

Base-Promoted, Ketene-Forming Elimination Reactions. Mechanistic Borderline between E2 and E1cb Mechanisms

  • Pyun, Sang-Yong;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1017-1024
    • /
    • 2005
  • Elimination reactions of $XC_6H_4CH_2CO_2C_6H_3-2-Y-4-NO_2$ have been studied under various conditions. When X was moderately electron-withdrawing, Y = H, and base-solvent was $R_2$NH-MeCN, the reaction proceeded by the E2 mechanism via an E1cb-like transition state. Concave downward curve was noted in the Hammett plots. When X = 4-$NO_2$, Y = Cl, $CF_3,\;NO_2$, and the base-solvent was ${R_2NH/R_2NH_2}^+$ in 70 mol % MeCN(aq), the reaction proceeded by the E2 mechanism. The mechanism changed to a competing E2 and E1cb when X = 4-$NO_2$ and Y = H, MeO, and to the E1cb when X = 2,4-($NO_2)_2$, and Y = $NO_2$. From these results, a plausible pathway of the change of the mechanism from E2 to the E1cb extreme is proposed.

Elimination Reactions of Aryl Furylacetates Promoted by R2NH-R2NH2 + in 70 mol% MeCN(aq). Effects of β-Aryl on the Ketene-Forming Transition-State

  • Pyun, Sang Yong;Kim, Ju Chang;Cho, Bong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2143-2147
    • /
    • 2014
  • Ketene-forming elimination from 2-X-4-nitrophenyl furylacetates (1a-d) promoted by $R_2NH-R_2NH_2{^+}$ in 70 mol % MeCN(aq) has been studied kinetically. When X = Cl and $NO_2$, the reactions exhibited second-order kinetics as well as Br$\ddot{o}$nsted ${\beta}$ = 0.37-0.54 and $|{\beta}_{lg}|$ = 0.31-0.45. The Br$\ddot{o}$nsted ${\beta}$ decreased with a poorer leaving group and $|{\beta}_{lg}|$ increased with a weaker base. The results are consistent with an E2 mechanism. When the leaving group was changed to a poorer one [X= H (1a) and $OCH_3$ (1b)], the reaction mechanism changed to the competing E2 and E1cb mechanisms. A further change to the E1cb mechanism was realized for the reaction of 1a with $i-Pr_2NH/i-Pr_2NH_2{^+}$ in 70 mol % MeCN-30 mol % $D_2O$. By comparing the kinetic results in this study with the existing data for $ArCH_2C(O)OC_6H_3-2-X-4-NO_2$, the effect of the ${\beta}$-aryl group on the ketene-forming elimination was assessed.