• Title/Summary/Keyword: E.E(End-Effector)

Search Result 15, Processing Time 0.03 seconds

A Study on the FEM Analysis and Gripping Force Control of End-Effector for the Wafer Handling Robot System (Wafer 반송용 End-Effector의 FEM 해석 및 파지력 제어에 관한 연구)

  • 권오진;최성주;이우영;이강원;박원규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.31-36
    • /
    • 2003
  • On this study, an E.E(End-Effector) for the 300 mm wafer transfer robot system is newly suggested. It is a mechanical type with $180^{\circ}$ rotating ranges and is composed of 3-point arms, two plate springs and single-axis DC motor controlled by microchip. To design, relationship between the gripping force and the wafer deformation is analyzed by FEM. By analytic results, the gripping force for 300 mm wafer is confirmed as 255~274 gf. From experimental results on gripping force, repeatable position accuracy and gripping cycle times in a wafer cleaning system, we confirmed that the suggested E.E was well designed to satisfiy on the required performance for 300 mm wafer transfer robot system.

  • PDF

Enhancing Motion Capture Data (모션 캡쳐 데이터 향상 기법)

  • 최광진
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.120-123
    • /
    • 1998
  • In animating an articulated entity with motion capture data, especially when the reconstruction is based on forward kinematics, there could be large discrepancies at the end effector. The small errors in joint angles tend to be amplified as the forward kinematics positioning progresses toward the end effector. In this paper, we present an algorithm that enhances the motion capture data to reduce positional errors at the end effector. The process is optimized so that the characteristics of the original joint angle data is preserved in the resulting motion. The frames at which the end-effector position needs to be accurate are designated as“keyframes”(e.g. starting and ending frames). In the algorithm, corrections by inverse kinematics are performed at sparse keyframes and they are interpolated with a cubic spline which produces a curve best approximating the measured joint angles. The experiment proves that our algorithm is a valuable tool to improve measured motion especially when end-effector trajectory contains a special goal.

  • PDF

Effect of an End-effector Type of Robotic Gait Training on Stand Capability, Locomotor Function, and Gait Speed in Individuals with Spastic Cerebral Palsy (엔드 이펙터 타입의 로봇보행훈련이 뇌성마비인의 서기, 보행 기능과 보행속도에 미치는 영향)

  • Hwang, Jongseok
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.123-130
    • /
    • 2021
  • PURPOSE: Robotic gait training is being used increasingly to improve the gross motor performance and gait speed. The present study examined the effectiveness of a novel end-effector type of robotic gait training (RGT) system on standing, walking, running, and jumping functions, as well as the gait speed in children with spastic cerebral palsy. METHODS: Eleven children with spastic cerebral palsy Gross Motor Function Classification System (GMFCS) levels I-III (6 males; age range, 15.09 ± 1.44 years) were examined. They underwent 24 sessions (30 minutes/sessions, one time/day, three days/week for eight consecutive weeks) of RGT. The Gross Motor Function Measure-88 D domain (GMFM D), and GMFM E were assessed with a pretest and posttest of RGT. The setting was a one-group pretest-posttest design. RESULTS: A comparison of the pre-test and post-test show that the outcomes in post-test of GMFM D (p < .01), GMFM E (p < .05), and 10MWT were improved significantly after RGT intervention. CONCLUSION: The present study provided the first evidence on the effects of an eight-weeks RGT intervention in participants with spastic CP. The outcomes of this clinical study showed that standing performance, locomotion function, and gait speed increased in after 24 sessions of the end-effector RGT system in children with spastic cerebral palsy.

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

Trajectory Tracking Performance Analysis of Underwater Manipulator for Autonomous Manipulation

  • Chae, Junbo;Yeu, Taekyeong;Lee, Yeongjun;Lee, Yoongeon;Yoon, Suk-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.180-193
    • /
    • 2020
  • In this study, the end-effector tracking performance of a manipulator installed on a remotely operated vehicle (ROV) for autonomous underwater intervention is verified. The underwater manipulator is an ARM 7E MINI model produced by the ECA group, which consists of six joints and one gripper. Of the six joints of the manipulator, two are revolute joints and the other four are prismatic joints. Velocity control is used to control the manipulator with forward and inverse kinematics. When the manipulator approaches a target object, it is difficult for the ROV to maintain its position and posture, owing to various disturbances, such as the variation in both the center of mass and the reaction force resulting from the manipulator motion. Therefore, it is necessary to compensate for the influences and ensure the relative distance to the object. Simulations and experiments are performed to track the trajectory of a virtual object, and the tracking performance is verified from the results.

Unified Motion and Force Control of JS-10 Robot Manipulator Based on Operational Space and 3D CAD (작업공간과 3D CAD를 기반으로 하는 JS-10 매니플레이터의 운동과 힘의 통합제어)

  • Ahn, D.S.;Nguyen, Van Phuc
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.57-63
    • /
    • 2012
  • 본 논문은 작업공간상에서 로봇 운동과 힘의 통합제어를 구현할 수 있는 플랫폼의 구현에 초점을 두고 있다. 조립 또는 디버링 같은 접촉작업에서의 매니플레이터 효율성 제고나 친 인간 환경에서의 휴머노이드 로봇의 안정성을 위해서는 종래의 PID 제어나 관절공간상에서의 CTM(Computed Torque Method) 제어보다는 작업공간상에서의 운동과 힘의 통합제어를 실시해야 한다. 이것을 위해서는 작업공간상에서의 엔드이펙트(end-effector, E-E)에 대한 동역학식과 자코비안(jacobian)을 도출해야 하며 이를 위해서는 각종 동적파라미터의 정확한 동정이 중요하다. 본 논문에서는 3D CAD 모델링, MATLAB, 동역학 시뮬레이터를 활용하여 로봇 모델링, 동역학식과 동적 파라미터 추출, 운동과 힘의 실시간 통합제어 시뮬레이션등을 쉽고 일관되게 진행할 수 있는 플랫폼을 구현하였고 적용예로써 JS-10로봇을 택해서 그 효용성을 입증하였다.

Development of Command Signal Generating Method for Assistive Wearable Robot of the Human Upper Extremity (상지 근력지원용 웨어러블 로봇을 위한 명령신호 생성 기법 개발)

  • Lee, Hee-Don;Yu, Seung-Nam;Lee, Seung-Hoon;Jang, Jae-Ho;Han, Jung-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2009
  • This paper proposes command signal generating method for a wearable robot using the force as the input signal. The basic concept of this system pursues the combination of the natural and sophisticated intelligence of human with the powerful motion capability of the robot. We define a task for the command signal generation to operate with the human body simultaneously, paying attention to comfort and ease of wear. In this study, we suggest a basic exoskeleton experimental system to evaluate a HRI(Human Robot Interface), selecting interfaces of arm braces on both wrists and a weight harness on the torso to connect the robot and human. We develop the HRI to provide a command for the robot motion. It connects between the human and the robot with the multi-axis load-cell, and it measures the relative force between the human and the robot. The control system calculates the trajectory of end-effector using this force signal. In this paper, we verify the performance of proposed system through the motion of elbow E/F(Extension/Flexion), the shoulder E/F and the shoulder Ab/Ad (Abduction/Adduction).

On the Integrated Operation Concept and Development Requirements of Robotics Loading System for Increasing Logistics Efficiency of Sub-Terminal

  • Lee, Sang Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, consumers who prefer contactless consumption are increasing due to pandemic trends such as Corona 19. This is the driving force for developing the last mile-based logistics ecosystem centered on the online e-commerce market. Lastmile led to the continued development of the logistics industry, but increased the amount of cargo in urban area, and caused social problems such as overcrowding of logistics. The courier service in the logistics base area utilizes the process of visiting the delivery site directly because the courier must precede the loading work of the cargo in the truck for the delivery of the ordered product. Currently, it's carried out as automated logistics equipment such as conveyor belt in unloading or classification stage, but the automation system isn't applied, so the work efficiency is decreasing and the intensity of the courier worker's labor is increased. In particular, small-scale courier workers belonging to the sub-terminal unload at night at underdeveloped facilities outside the city center. Therefore, the productivity of the work is lowered and the risk of safety accidents is exposed, so robot-based loading technology is needed. In this paper, we have derived the top-level concept and requirements of robot-based loading system to increase the flexibility of logistics processing and to ensure the safety of courier drivers. We defined algorithms and motion concepts to increase the cargo loading efficiency of logistics sub-terminals through the requirements of end effector technology, which is important among concepts. Finally, the control technique was proposed to determine and position the load for design input development of the automatic conveyor system.

Decentralized Motion Control of Mobile Manipulator

  • Phan, Tan-Tung;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1841-1846
    • /
    • 2003
  • The mobile platform-manipulator discussed in this paper is a three link manipulator mounted on a mobile platform. This mobile manipulator is used for welding operation and it is able to operate in a narrow space. The task of the torch, which is mounted at the end effector of the manipulator, is to track along the seam line and the task of the mobile platform is to move the origin point of the manipulator in order to go away from the singularity of the manipulator’s configuration. In this paper, the path planning for the motion of two subsystems (i.e., the manipulator and the mobile platform) was presented by the decentralized control method. Two controllers for the mobile platform and the manipulator were designed, and the relationship between the independent controllers is its state information. The simulation results are also presented to demonstrate the effectiveness of the control method.

  • PDF

Workspace Mapping for a Manipulator Operated by Universal Master

  • Lee, Min-Soo;Lee, Jong-Kwang;Kang, E-Seok;Park, Byung-Suk;Yoon, Ji-Sup;Song, Tai-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.85.5-85
    • /
    • 2002
  • The Master-Slave manipulator is generally used as a remote handling device in the hot cell, in which the high level radio-active materials such as spent fuels are handled. This study describes a workspace mapping algorithm for a kinematically dissimilar master-slave system The algorithm provides the operator to guide the slave's end effector into unreachable regions which can appear due to the mismatch of workspace between the master and slave manipulator. A spaceball was used for the universal master device, and it can detect the slight fingertip force applied on the ball and also resolve the applied force. The spaceball device was also used to move 3D images instantaneously and simultaneou...

  • PDF