• Title/Summary/Keyword: E. coli system

Search Result 736, Processing Time 0.036 seconds

Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water

  • Kim, Hyung-Eun;Lee, Hye-Jin;Kim, Min Sik;Choi, Joon-Young;Lee, Changha
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • Peroxymonosulfate (PMS) in combination with Cu(II) was examined to inactivate E. coli and MS2 coliphage in natural water. The combined system (i.e., the Cu(II)/PMS system) caused a synergistic inactivation of E. coli and MS2, in contrast with either Cu(II) or PMS alone. Increasing the concentration of PMS enhanced the inactivation of E. coli and MS2, but after a certain point, it decreased the efficacy of the microbial inactivation. In the Cu(II)/PMS system, adding reactive oxidant scavengers marginally affected the E. coli inactivation, but the inhibitory effects of copper-chelating agents were significant. Fluorescent assays indicated that the Cu(II)/PMS system greatly increased the level of reactive oxidants inside the E. coli cells. The sequential addition of Cu(II) and PMS inactivated more E. coli than did adding the two simultaneously; in particular, the inactivation efficacy was much higher when Cu(II) was added first. The observations from the study collectively showed that the microbial inactivation by the Cu(II)/PMS system could be attributed to the toxicity of Cu(I) as well as the intracellular oxidative stress induced by Cu(III) or radical species.

Mutagenic Mechanism of Chloropropanols in Escherichia coli (대장균 변이주를 이용한 Chloropropanol 변이원성 기구의 해석)

  • Song, Geun-Seoup;Han, Sang-Bae;Choi, Dong-Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.246-251
    • /
    • 1999
  • This study was designed to evaluate the mutagenicity and the primary mutagenic mechanism of chloropropanols by using various genotypes of E. coli WP2, E. coli TK and E. coli GW series strains. Chloropropanols showed the low mutagenic activities in E. coli WP2s and WP2 establishing the following order; 2,3-DCP> 3-MCPD>1,3-DCP. As compared with E. coli WP2s, the decrease of mutagenic activity and the increase of survival rate in E. coli WP2 $(WP2s\;uvrA^+)$ suggest that DNA lesions produced by chloropropanols could be easily removed by excision-repair system. From the diminution of mutagenic activity and survival rate in E. coli CM611 (WP2s lexA), it was confirmed that the mutagenesis by chloropropanols was dependent on the SOS-repair system. This fact could be also confirmed from the result that both the mutagenic activity and survival rate in E. coli TK610 (umuC) were much lower than those in E. coli TK603 $(umuC^+)$. In the experiment to examine the possibility that chloropropanols might have effects on the LexA of SOS response negative regulator, there was no variation in ${\beta}-galactosidase$ activities of E. coli GW1105 $[lexA3\;(Ind^-)]$ and GW1107 [lexA51 (Def)] by addition of the compounds, indicating that chloropropanols do not have any effects on the LexA, itself.

  • PDF

Recognition of Microorganisms Using SPR Biosensor Immobilized with Thiolated Antibody (티올화 항체고정형 SPR 바이오센서를 이용한 미생물 인식)

  • 조용진;김남수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.167-172
    • /
    • 2003
  • This study was performed to fabricate a batch-type SPR biosensing system using a thiolated E. coli antibody coupling, and to explore the feasibility of real-time detection of E. coii in a stagnant sample solution. In advance. “O” and “K” antigenic serotype E. coli antibodies were thiolated with sulfo-LC-SPDP and dithiothreitol, and immobilized by chemisorption in the gold surface of compact SPR sensors. When the SPR biosensor immobilized with E. coli antibody monitored a E. coli solution, it took 3 to 5 min to stabilize. The SPR biosensing system developed in this study was able to detect E. coli in the range above 10$^4$ CFU/mL at the 0.05 significant level. Also, the SPR biosensor had possibility to significantly detect E. coli in the range of 10$^2$ to 10$^4$ CFU/mL in E. coli solutions. Meanwhile, when the SPR biosensor immobilized with 5. coli antibody was cleaned with NaOH solutions, its ability to detect E. coli largely decreased due to wash-out of the immobilized antibody. In order to reuse the SPR sensor, it should be antibody-immobilized newly.

Comparison of Biochemical Identification to Detect Pathogenic Escherichia coli in Fresh Vegetables (신선편이 엽채류의 병원성 E. coli 검출을 위한 생화학적동정법 비교 분석)

  • Choi, Yukyung;Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Ha, Jimyeng;Lee, Jeeyeon;Oh, Hyemin;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.393-398
    • /
    • 2016
  • The objective of this study was to isolate pathogenic Escherichia coli from fresh vegetables with selective media and Petrifilm, and identify a suspicious colony using biochemical identification. Twenty gram of lettuce, twenty gram of cabbage and ten gram of sprout were prepared, and a 5-strain mixture of pathogenic E. coli (Enterohemorrhagic E. coli NCCP11142, Enterotoxigenic E. coli NCCP14037, Enteropathogenic E. coli NCCP14038, Enteroaggregative E. coli NCCP14039, Enteropathogenic E. coli NCCP15661) was inoculated to obtain 1, 2 and 3 log CFU/g. Eighty to ninety milliliter of buffered peptone water (BPW) was placed and pummeled for 60 s. As a results, the Petrifilm method was all positive, but enrichment method of qualitative analysis was negative except for 3-log CFU/g inoculated lettuce. Regarding biochemical identification of pathogenic E. coli, the identification rates were dependent on type of methods and vegetables; lettuce: API 20E 100% (44/44), Microgen GNA 100% (44/44) and Food System 66.7% (10/15), cabbage: API 20E 64.7% (22/34), Microgen GNA 50% (16/32) and Food System 60% (9/15), sprout: API 20E 65.1% (28/43), Microgen GNA 62.3% (27/43) and Food System 53.3% (8/15). These results could be useful in determining an appropriate method to detect pathogenic E. coli in fresh vegetables.

Norfloxacin Resistance Mechanism of E. coli 11 and E. coli 101-Clinical Isolates of Escherichia coli in Korea

  • Kim, Kyung-Soon;Lee, Soon-Deuk;Lee, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.353-358
    • /
    • 1996
  • E. coli 11 and E. coli 101, clinical isolates of Escherichia coli were resistant to various quinolones, especially MICs to norfloxacin of both strains were higher than 100 mg/ml. In the presence of carbonyl cyanide m-chlorophenylhydrazone, a proton gradient uncoupler, norfloxacin uptake in both strains was increased, suggesting that an efflux system play an important role in the norfloxacin resistance. Outer membrane proteins of the susceptible and resistant strains which could affect the route of norfloxacin entry into cells were different. When quinolone resistance determining region(QRDR) of gyrA was amplified using PCR and cut with Hinf I, QRDR in the susceptible strain yielded two fragments while QRDRs in E. coli 11 and E. coli 101 yielded only one uncut fragment. When DNA sequence of QRDR was analyzed, there were two mutations as Ser-83 and Asp-87 in both resistant strains. these residues were changed to Leu-83 and Asn-87, respectively. These results showed that the norfloxacin resistance of E. coli 11 and E. coli 101 was resulted from multiple changes-an altered DNA gyrase A subunit, a change in route of drug entry, and reduction in quinolone concentration inside cells due to an efflux system.

  • PDF

Construction Various Recombiant Plasmids for the Enhancement of Glutathione Production in E. coli. (E. coli에서 글루타치온 생산 증가를 위한 재조합 플라스미드의 구성)

  • 남용석;이세영
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1997
  • In order to enhance glutathione production, various recombinant plasmids containing gshI and/or gshII genes isolated from E. coli K-12 were constructed and introduced into E. coli. Some plasmids contained one to three copies of gshI genes in pBR325 and others contained both gshI and genes for glutathione biosynthesis. $\gamma$-Glutamylcysteine synthetase activities of E, coli strains amplified tandem repeated gshI genes were dependent on the number of inserted gshI genes. The glutathione productivity of E. coli strains harboring various plasmids was investigated using an E. coli acetate kinase reaction as an ATP regenerating system. The glutathione productivity of E. coli strains harboring tandem repeated gshI genes was increased in proportion to the number of inserted gshI genes. By the introduction of gshII gene, the glutathione productivity of the E. coli was increased by two-fold compared with E. coli strain amplified gshI gene only. The enzymatic production of glytathione in E. coli was mainly affected by the increase of $\gamma$-glutamylcysteine synthetase activity. The highest glutathione productivity was obtained in E. coli strains harboring pGH-501 plasmid containing two copies of gshI and copy of gshII genes in pUC8 vector.

  • PDF

Evaluating Commercial Spray Applications of Lactic Acid, Hot Water, and Acidified Sodium Chlorite for the Reduction of Escherichia coli on Beef Carcasses

  • Kang, Dong-Hyun;Lee, Sun-Young
    • Food Quality and Culture
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2008
  • This study examined the effects of lactic acid spray, hot water spray, or their combined treatment, as well as the effects of acidified sodium chlorite (ASC), for the decontamination of Escherichia coli on beef carcass surfaces using a commercial intervention system. With this system, the effects of 2 or 4% lactic acid (v/v), hot water ($89{\pm}1^{\circ}C$), or their combined treatment, were examined in terms of reducing inoculated E. coli. ASC (266 ppm), which was adjusted to pH 2.5 using acetic acid or citric acid, was applied using a hand-held spray system. When the beef carcasses were treated with 2 or 4% lactic acid for 10.4 s, less than 1 log reductions of inoculated E. coli were observed. A hot water spray treatment for 9.8 s resulted in a 2.1 log reduction of inoculated E. coli. However, when the hot water was followed with either 2 or 4% lactic acid, no difference in E. coli reduction was found between the hot water alone or the combined treatment with lactic acid. When ASC was adjusted to pH 2.5 with acetic acid and citric acid, 3.8 and 4.1 log reductions of E. coli were observed, respectively. Overall, the lactic acid spray treatment was least effective, and the ASC treatment was most effective, for the E. coli decontamination of beef carcasses. Therefore, these data suggest that ASC would be a more effective intervention against E. coli than most of the methods currently being used. However, more research is required to evaluate the effects of ASC on other organisms, as well as to identify application methods that will not affect meat quality.

  • PDF

Feasibility Study of UV Disinfection system of Small Wastewater System for Water Reclamation (용수 재이용을 위한 소규모 하수처리시설의 UV disinfection system)

  • Joung, Kwang-Wook;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.421-424
    • /
    • 2002
  • Deterministic and probabilistic approaches to the design of ultraviolet (UV) disinfection system for water reclamation are reviewed and discussed. The high inactivation of TC, FC and E. coli by UV disinfection was demonstrated and the inactivations of TC, FC and E. coli were 97%, 98% and 99%, respectively. Within the range of 0.3-4.5mWs/cm, the effect of UV does on the inactivation ratio was not observed. However, in the highest wattage of UV lamp, 39W, the inactivation ratio of TC, FC and E. coli was 100%, regardless of the UV does so the UV density was more effective on inactivation ratio of TC, FC and E. coli rather than UV does. Under the 0.4 mWs/cm and 16W of UV lamp, the effect of dissolved organic matter and turbidity on the inactivations of TC, FC and E. coli could not be observed in this study within the range of 0-60mg/L and 0-40 NTU respectively.

  • PDF

Transformation of Glutamic Acid to Glutamine by E. coli Glutamine Synthetase (E. coli Glutamine Synthetase에 의한 Glutamic Acid로부터 Glutamine 으로의 전환)

  • 전복환;신형순;이왕식;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.379-384
    • /
    • 1989
  • Glutamine production from glutamate was carried out using glutamine synthetase from E. coli K-12 pgln 6 and baker's yeast, which supplies ATP into the reaction system through alcohol fermentation, simultaneously. With whole cells of E. coli K-12 pgln 6 as an enzyme source of glutamine synthetase, 11.8 g/ι of glutamine produced after 18-h incubation (60% yield based on a substrate, glutamate). Using the partially purified glutamine synthetase, 19.8 git of glutamine was produced after 5-h incubation. This amount of glutamine was correspond to 90% yield, based on substrate, glutamate.

  • PDF

Development of E. coli Expression System to Overproduce a Harmful Protein, Carboxypeptidase Taq.

  • Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.108-110
    • /
    • 2001
  • The E. coli expression system to overproduce a harmful protein, carboxypeptidase Taq was developed. Since expression plasmid pCK305N containing the colicin promoter already has the initiation codon on the restriction site, the initiation codon of the CPase Taq gene was removed. Expression plasmid pCP4-col includes the entire CPase Taq gene, which is directed by the colicin promoter. E. coli cells harboring pCP-col produced a high amount of the enzyme when they were cultured in the present of mitomycin C (0.4 ${\mu}g$/ml). An amount of purified enzyme produced by pCP4-col directed by the colicin promoter was 10.5 mg. This result indicated that the novel E. coli expression system controlled by the colicin promoter could produce almost twice amounts of CPase Taq than the conventional system controlled by the tart promoter.

  • PDF