• Title/Summary/Keyword: E. coli inhibition

Search Result 418, Processing Time 0.022 seconds

A Facile Solvent and Catalyst Free Synthesis of New Dihydro Pyrimidinones as Antimicrobial Agents

  • Hegde, Hemant;Ahn, Chuljin;Gaonkar, Santosh L.;Shetty, Nitinkumar S.
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.435-439
    • /
    • 2019
  • An efficient one pot multicomponent synthesis of pyrimidinone derivatives of Biginelli type is described. 4-amino-6-aryl-pyrimidine-5-carbonitrile molecules were synthesized efficiently via three-component Biginelli-type condensation of aldehyde, malononitrile, and semicarbazone as urea substituent in the presence of a catalytic amount of PEG-400 as green medium under microwave irradiation. The reactions proceeded efficiently in the presence of microwave radiation to afford the desired products in good to excellent yields. Products have been confirmed by IR, and NMR spectral analysis. All the molecules were tested for their antimicrobial activity against E. coli, S. aureus, P. aeruginosa and C. tropicalis. Some of the compounds have shown moderate to good inhibition efficiency against both gram-positive and gram-negative bacteria. The potent activity was observed against the fungal species with minimum inhibition concentration 12.5 ㎍/mL.

Inhibition of Thymidylate Synthase by Non-Steroidal Anti-Inflammatory Drugs

  • Cho, Sung-Woo;Park, Soo-Young;Kim, Tae ue
    • Biomolecules & Therapeutics
    • /
    • v.3 no.1
    • /
    • pp.34-37
    • /
    • 1995
  • Non-steroidal anti-inflammatory drugs (NSAIDs) have been known as inhibitors of the folate-requiring enzymes. In the present work, we have expanded on these observations and have investigated the inhibitory effects of NSAIDs on Lactobacillus casei thymidylate synthase expressed in E. coli. NSAIDs including sulphasalizine, salicylic acid, indomethacin and mefenamic acid were found to be competitive inhibitors with respect to folate of Lactobacillus casei thymidylate synthase. In contrast, aspirin and the antipyretic-analgesic drugs acetaminophen and antipyrine were weak inhibitors of the enzyme. Structure-activity correlation suggests that an aromatic ring with a side chain containing a carboxylic acid is a requirement for competitive inhibition of the thymidylate synthase. The results are consistent with the hypothesis that the antifolate activity of NSAIDs, and hence cytostatic consequences, are important factors in producing anti-inflammatory activity and aspirin exerts its anti-inflammatory effects after its conversion into salicylic acid, which possesses greater antifolate activity than its parent compound.

  • PDF

Pharmacology of Iridoid: Antimicrobial Activities of Aucubin

  • Lee, Eun-Sook;Ahn, Jung-Wook;Mar, Woong-Chon;Chang, Il-Moo
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.2
    • /
    • pp.129-133
    • /
    • 1986
  • Antimicrobial activities of aucubin, an iridoid glycoside, were investigated. Gram-positive bacterium, S. aureus appeared to be more sensitive to aucubin's aglucone, aucubigenin than Gram-negative, E. coli did. Antimicrobial activities produced by aucubigenin may result in part from the inhibition of RNA and protein biosyntheses in bacterial cells. The conversion of aucubin iridoid glycoside into aucubigenin, an aglucone, appears to be a prerequisite step to exhibit the antimicrobial activities.

  • PDF

Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants

  • Kovalskaya, Natalia;Foster-Frey, Juli;Donovan, David M.;Bauchan, Gary;Hammond, Rosemarie W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.160-170
    • /
    • 2016
  • The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

Growth Rate and Antimicrobial Activity of Lactobacillus plantarum Reacting with Bacterial Culture Supernatant (세균 배양액과 반응한 Lactobacillus plantarum의 생장속도 및 항균 활성에 대한 연구)

  • Ha, Eun-Mi
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • In this study, L. plantarum, when reacting with the culture media of potential pathogenic bacteria, exhibited an increase in growth rate and antimicrobial activity. In order to examine the characteristics and the nature of the reaction with the bacteria, this study carried out experiments involving culturing the test bacteria in M9 minimal media. Subsequently, the supernatant was incrassated by the decompression-drying method. Through colony forming unit assay, it was confirmed that L. plantarum had the function of growth inhibition to various bacteria. After culturing L. plantarum with bacterial media, the growth rate of L. plantarum was measured by absorbance (OD600), the results showed that the growth rate (E. coli treatment group: OD600 = 0.848, S. typhimurium treatment group: OD600 = 0.848) increased, as compared with the non-treated control group (OD600 = 0.48). In contrast, the concentrate itself did not induce the growth of L. plantarum. These results were observed as a universal phenomenon of the Lactobacillus species. Moreover, the increase in antimicrobial activity was observed in L. plantarum, which reacted with the culture media of E. coli and S. typhimurium, through a disc diffusion assay, and the result of growth inhibition against various bacteria was induced. Finally, based on the analysis results of the characteristics of bacteria culture media, which increased the growth rate of L. plantarum and antibacterial activity, the bacterial media had a tolerance for catabolic enzymes, pH 2−8 and heat. Therefore, this substance can be said to be a small molecule which is highly stable under various conditions.

Antimicrobial Effects of Lactic Acid Bacteria Isolated from Tibetan Yogurt against Foodborne Pathogenic Bacteria (티베트 요거트에서 분리한 유산균의 병원성 세균 항균 효과 연구)

  • Gho, Ju Young;Lee, Jiyeon;Choi, Hanhee;Park, Sun Woo;Kang, Seok-Seong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.121-127
    • /
    • 2021
  • Yogurt is produced by bacterial fermentation of milk and contains lactic acid bacteria (LAB), which produce various metabolites such as organic acid, hydrogen peroxide, and bacteriocin. This study aimed to investigate cell-free supernatants (CFS) of LAB isolated from Tibetan yogurt. CFS (TY1, TY2, TY3, TY4, TY5, TY6, and TY7) from selected strains of LAB were co-incubated with four different foodborne pathogenic bacteria, namely E. coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus. Inhibition of foodborne pathogenic bacterial growth was not affected in the presence of CFS (pH 6.5). In contrast, CFS without neutralization completely inhibited the growth of the bacteria. Furthermore, when the concentration of CFS (without neutralization) was changed to 1:4 and 1:8, a difference in inhibition was observed between Gram-positive and Gram-negative bacteria. CFS more effectively inhibited the growth of Gram-negative E. coli O157:H7 and S. Typhimurium than Gram-positive L. monocytogenes and S. aureus. These results suggest that organic acids in LAB may inhibit the growth of foodborne pathogenic bacteria, particularly Gram-negative bacteria.

Prevention of Catheter-related Infections (CRIs) using Ciprofloxacin

  • Jeon Sung Min;Kim Mal Nam
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2004
  • Microbial infection provokes one of the most serious complications to the patients with indwelling catheters. Ciprofloxacin (CFX) was added into the catheter materials (polyurethane or silicone) during the manufacturing process to avoid the microbial infection. Efficacy of the catheters containing CFX was investigated by using the in vitro zone of growth inhibition test method. The catheters made of polyurethane or silicone exhibited a strong antimicrobial activity against the major catheter-related microorganisms (S. aureus, S. epidermidis, P. aeruginosa and E. coli), when CFX was incorporated into the catheters. Fetal bovine serum (FBS) did not affected antimicrobial activities of the polyurethane catheters with CFX loading of 0.5 and 1.0% (W/W) against S. aureus and S. epidermidis. However, the polyurethane catheters with 1.0% (W/W) of CFX loading showed a significantly (P<0.05) reduced antimicrobial activity against E. coli when the catheters were exposed to FBS. Silicone catheters with 1.0 and 1.5% (W/W) of CFX loading demonstrated effective antimicrobial activity against S. epidermidis for at least 2 weeks. These results suggest that the use of catheters containing ciprofloxacin could be effective in preventing catheter-related infections.

  • PDF

A Study on the Antimicrobial Activity and Preservative Effect of Thiamine Dilauryl Sulfate in Cosmetics (티아민 디라우릴 황산염이 함유된 화장품의 항균활성 및 방부효과에 관한 연구)

  • Lee, Dong-Kyu;Kim, Hyuk-Soo;Cho, Kyung-Whan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.212-218
    • /
    • 2005
  • Most of cosmetics are emulsion products that contain the source of nutrition vegetable oil, mineral oil, natural extract and carbohydrate etc. There are many possibilities to be contaminated by microbials. We investigated the effect of antimicrobial and minimum inhibitory concentration(MIC) with thiamine dilauryl sulfate(TDS), which was prepared to use cosmetic lotion formulation. Staphylococcus aureus(S. aureus) and Escherichia col(E. coli) were used as test organism. MIC value of TDS was determined aganist microorganism for the growth inhibition by concentration of TDS. From the MIC results, antimicrobial effect of TDS was generally more effective to gram positive than gram negative. Antimicrobial effect with pH value against some microorganism appeared in the following order : pH 5 > pH 6 > pH 7. It showed strong antimicrobial activities against S. aureus, and weak antimicrobial activities against E. coli. If it was possible to determine the formulations with TDS, it would be effective to reduce the artificial preservatives.

Roles of the Peptide Transport Systems and Aminopeptidase PepA in Peptide Assimilation by Helicobacter pylori

  • Ki, Mi Ran;Lee, Ji Hyun;Yun, Soon Kyu;Choi, Kyung Min;Hwang, Se Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1629-1633
    • /
    • 2015
  • Peptide assimilation in Helicobacter pylori necessitates a coordinated working of the peptide transport systems (PepTs) and aminopeptidase (PepA). We found that H. pylori hydrolyzes two detector peptides, L-phenylalanyl- L-3-thiaphenylalanine (PSP) and L-phenylalanyl- L-2-sulfanilylglycine (PSG), primarily before intake and excludes their antibacterial effects, whereas Escherichia coli readily transports them with resultant growth inhibition. PSP assimilation by H. pylori was inhibited by aminopeptidase inhibitor bestatin, but not by dialanine or cyanide-m-chlorophenylhydrazone, contrary to that of E. coli. RT- and qRT-PCR analyses showed that H. pylori may express first the PepTs (e.g., DppA and DppB) and then PepA. In addition, western blot analysis of PepA suggested that the bacterium secretes PepA in response to specific inducers.

Isolation and Properties of Bacteriocin-producing Microorganisms (Bacteriocin 생산균주의 분리 및 성질)

  • 유진영;이이선;남영중;정건섭
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.8-13
    • /
    • 1991
  • Bacteriocin-producing microorganisms were screened from raw milk and tested their antimicrobial activities against Lactobacillus plantarum ATCC 8014 as target organism, Antimicrobial substances isolated showed broad antimicrobial spectra against Gram positives and negatives. Strain 1112-1 was selected as a test organism due to its highest antimicrobial activity among the isolates. Antimicrobial substance produced by 1112-1 completely suppressed the growth of Lactobacillus plantarum at 230 IUIml and showed 11% growth inhibition of E. coli at 500 IUIrnl level. The antimicrobial substance was found to be proteinaceous material which was inactivated by carboxypeptidase, elastase, alpha amylase, amyloglucosidase, pronase, protease IV, alpha chymotrypsin, ficin, cellulase, phosphatase and lipase. The molecular weight was estimated by SDS-PAGE as 5,900. The isolate 1112-1 was identified as one of the related strains of Lactococcus sp. The strain was different from Lactococcus lactis in the following characteristics: late positive in maltose and sucrose fermentation; positive in mannitol and salicin fermentation; negative in lactose fermentation.

  • PDF