• 제목/요약/키워드: E. coli LI-10

검색결과 61건 처리시간 0.025초

Comparative Study on Characterization of Recombinant B Subunit of E. coli Heat-Labile Enterotoxin (rLTB) Prepared from E. coli and P. pastoris

  • Ma, Xingyuan;Yao, Bi;Zheng, Wenyun;Li, Linfeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.550-557
    • /
    • 2010
  • Escherichia coli (E. coli) heat-labile enterotoxin B subunit (LTB) was regarded as one of the most powerful mucosal immunoadjuvants eliciting strong immunoresponse to coadministered antigens. In the research, the high-level secretory expression of functional LTB was achieved in P. pastoris through high-density fermentation in a 5-1 fermentor. Meanwhile, the protein was expressed in E. coli by the way of inclusion body, although the gene was cloned from E. coli. Some positive yeast and E. coli transformants were obtained respectively by a series of screenings and identifications. Fusion proteins LTB-6$\times$His could be secreted into the supernatant of the medium after the recombinant P. pastoris was induced by 0.5% (v/v) methanol at $30^{\circ}C$, whereas E. coli transformants expressed target protein in inclusion body after being induced by 1 mM IPTG at $37^{\circ}C$. The expression level increased dramatically to 250-300 mg/l supernatant of fermentation in the former and 80-100 mg/l in the latter. The LTB-6$\times$His were purified to 95% purity by affinity chromatography and characterized by SDS-PAGE and Western blot. Adjuvant activity of target protein was analyzed by binding ability with GMI gangliosides. The MW of LTB-6$\times$His expressed in P. pastoris was greater than that in E. coli, which was equal to the expected 11 kDa, possibly resulted from glycosylation by P. pastoris that would enhance the immunogenicity of co-administered antigens. These data demonstrated that P. pastoris producing heterologous LTB has significant advantages in higher expression level and in adjuvant activity compared with the homologous E. coli system.

Expression of E. coli Phosphofructokinase Gene in an Autotrophic Bacterium Acidithiobacillus thiooxidans

  • Tian, Ke-Li;Lin, Jian-Qun;Liu, Xiang-Mei;Liu, Ying;Zhang, Chang-Kai;Yan, Wang-Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.56-61
    • /
    • 2004
  • A plasmid pSDK-l containing the Escherichia coli phosphofructokinase-l gene (pfkA) was constructed, and transferred into extremely acidophilic Acidithiobacillus thiooxidans Tt-7 by conjugation with the aid of plasmid RP4 at a frequency of $10^{-5}$ per recipient. This plasmid was stable in A. thiooxidans. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium, but the enzyme activity (21.6 U/g protein) was lower than that in E. coli (K12: 85.9 Dig protein; DF1010 carrying plasmid pSDK-l: 96.6 U/g protein). In the presence of glucose, the Tt-7 transconjugants consumed glucose, leading to a better growth yield.

eae+ Escherichia coli의 항생제 감수성 및 내성 패턴 (Antimicrobial Resistance Profiles of eae Positive Escherichia coli)

  • 이민화;최창순
    • 한국식품위생안전성학회지
    • /
    • 제22권2호
    • /
    • pp.116-119
    • /
    • 2007
  • 돼지로부터 분리한 eae+Escherichia coli 67주에 대한 항생제 감수성 시험 결과, Ne에 41.8%, Li에 74.6%, DFX에 73.1%, ENR에 64.2%, Cef에 98.5%의 감수성을 나타내었다. 총 8종의 항생제에 대한 E. coli의 내성패턴을 분석하였을 때 12가지 내성 패턴을 나타내었으며, 그 중 4 제, 3 제 및 6제에 각각 26주(39%), 16 주(24%), 10주(14.9%)로 높았으며, 7종 항생제에 대해 내성을 나타내는 균주도 6주(8.9%)가 확인되었다. 본 실험에 의하면 최근에 사용되기 시작한 항생제의 경우 항생제 내성의 출현이 활발하지 않았으며, 지속적으로 노출된 항생제에 대해서는 감수성이 현저히 낮은 것으로 나타났다. Penicillin, Tetracycline, Neomycin은 본 실험에서 100%의 내성을 나타내며 돈육에서 분리되는 대장균간에 내성 전이가 활발한 것으로 추정되었다.

Rapid Preparation of Total Nucleic Acids from E. coli for Multi-purpose Applications

  • Cheng, Lin;Li, Tai-Yuan;Zhang, Yi
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.351-355
    • /
    • 2004
  • Separate protocols are commonly used to prepare plasmid DNA, chromosomal DNA, or total RNA from E. coli cells. Various methods for the rapid preparation of plasmid DNA have been developed previously, but the preparation of the chromosomal DNA and total RNA are usually laborious. We report here a simple, fast, reliable, and cost-effective method to extract total nucleic acids from E. coli by direct lysis of the cells with phenol. Five distinct and sharp bands, which correspond to chromosomal DNA, plasmid DNA, 23S rRNA, 16S rRNA, and a mixture of small RNA, were observed when analyzing the prepared total nucleic acids on a regular 1-2% agarose gel. The simple and high-quality preparation of the total nucleic acids in a singe tube allowed us to rapidly screen the recombinant plasmid, as well as to simultaneously monitor the change of the plasmid copy number and rRNA levels during the growth of E. coli in the liquid medium.

단세포단백질 생산을 위한 혼합배양의 생육조건 (Growth conditions of symbiosis for production of single cell protein)

  • 이해경;정영건;권오진
    • Applied Biological Chemistry
    • /
    • 제39권5호
    • /
    • pp.343-348
    • /
    • 1996
  • Mouse의 대장에서 분리된 E. coli LI-10 균주를 보조균주로 하여 Cellulomonas sp. KL-6과 혼합배양한 결과, 균체증식은 주균주와 보조균주를 1 : 1(v/v)의 비로 혼합하였을 때 가장 좋았다. 혼합배양은 주균주 단독배양 보다 균체증식을 63% 정도로 증가시켰으며 두 균주의 분포도는 10 : 1 비율로 KL-6 균주가 주로 분포되어 있었다. 0.1%의 $CaCO_3$의 첨가는 무첨가에 비해 각 배양기간별로 pH를 상승시켜 어느정도의 균체증식을 가져왔다. Filter paper 배지에서 혼합배양시, 본 균주들은 cellobiose를 월등하게 많이 생산하였으나 glucose는 검출되지 않았다. 균체증식 최적배지에서 4일간 혼합배양하였을 때, $1.0\;g/{\ell}$의 균체량을 생산하여 기본배지인 CMC 배지에서 생산한 균체량보다 53% 정도가 증가되었다.

  • PDF

Enhanced Activity of Phenylalanine Ammonia Lyase in Permeabilised Recombinant E. coli by Response Surface Method

  • Cui, Jian-dong;Li, Yan;Jia, Shi-Ru
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.494-499
    • /
    • 2009
  • To improve phenylalanine ammonia lyase (E.C.4.3.1.5-PAL) activity in recombinant Escherichia coli, Some approaches for improving phenylalanine ammonia lyase (PAL) activity in recombinant E. coli were developed following preliminary studies by means of response surface method. The results shown that permeabilization with combination of Triton X-100, cetyl trimethyl ammonium bromide (CTAB), and acetone enriched cellular recombinant PAL activity significantly, which improved over 10-fold as compared with the control (untreat cell), as high as 181.37 U/g. The optimum values for the tested variables were Triton X-100 0.108 g/L, CTAB 0.15 g/L, and acetone 45.2%(v/v). Furthermore, a second-order model equation was suggested and then validated experimentally. It was indicated that addition of surfactants and organic solvents made the cells more permeable and therefore allowed easier access of the substrate to the enzyme and excretion of the product, which increased the rate of transport of L-phenylalanine and trans-cinnamic acids. These improved methods of PAL activity enrichment could serve as a rich enzyme source, especially in the biosynthesis of L-phenylalanine.

세균 단세포단백질(SCP) 생산을 위한 보조균주의 분리와 그 효과 (Isolation and its effect of a second organism for single cell protein(SCP) production)

  • 권오진;양성호
    • 한국환경보건학회지
    • /
    • 제22권2호
    • /
    • pp.10-18
    • /
    • 1996
  • Experiments were carried out to find the possibility of an economic production of single cell protein(SCP) in mixed culture by Cellulomonas sp. KL-6 and a second organism. The second organism, strain LI-10, was isolated from the large intestines of a mouse. 1. When these strains were mixed, cell growth and carboxymethyl cellulase (CMCase) activity were increased to about 63% and 161%, respectively compared with that of single culture of strain KL-6. We found the mixed culture as a proper method of degradation of cellulose in our study. 2. Strain LI-10 was identified as E. coli. 3. This strain produced trace amounts of cellobiose, but glucose was not found in detectable amounts in the filter paper(FP) medium. 4. $CaCO_3$ injected in the medium at the ratio of 0.1% not only enhanced cell growth but also was effective as an acid neutralizing agent. 5. When this organism was cultured under the optimal medium (glucose 0.1%, $NH_4Cl$ 0.1%, yeast extract 2.0%, $KH_2PO_4$ 0.1%, KCl 0.05%, pH 7.2 and a temperature 30$\circ$C) for 5 days, a cell mass produced 1.18 g/l. The results showed the increase of cell mass up to 300% compared to 0.28 g/l produced in CMC medium.

  • PDF

The Stability, and Efficacy Against Penicillin-Resistant Enterococcus faecium, of the Plectasin Peptide Efficiently Produced by Escherichia coli

  • Chen, Xin;Wen, Yaoan;Li, Ling;Shi, Jiawei;Zhu, Zhe;Luo, Yuwen;Li, Yun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1007-1014
    • /
    • 2015
  • Plectasin, the first defensin extracted from a fungus (the saprophytic ascomycete Pseudoplectania nigrella), is attractive as a prospective antimicrobial agent. The purpose of this study was to establish a bacterium-based production system and evaluate the antimicrobial activity of the resulting plectasin. A gene encoding plectasin, with the codon preference of Escherichia coli, was optimized based on its amino acid sequence, synthesized using genesplicing with overlap extension PCR, and inserted into the expression vector pGEX-4T-1. The fusion protein was expressed in the soluble fraction of E. coli and purified using glutathione Stransferase affinity chromatography. Plectasin was cleaved from the fusion protein with thrombin and purified by ultrafiltration. The purified plectasin showed strong, concentrationdependent antimicrobial activity against gram-positive bacteria, including antibiotic-resistant bacteria, especially penicillin-resistant Enterococcus faecium. This antimicrobial activity was equal to chemically synthesized plectasin and was maintained over a wide range of pH and temperatures. This soluble recombinant expression system in E. coli is effective for producing plectasin at a relatively lower cost, and higher purity and efficiency than prior systems, and might provide a foundation for developing a large-scale production system. Overall, plectasin shows potential as a novel, high-performance, and safe antibiotic for the treatment of refractory diseases caused by drug-resistant bacterial strains.

Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes

  • Yu, Lu;Chen, Yuan;Shi, Jie;Wang, Rufeng;Yang, Yingbo;Yang, Li;Zhao, Shujuan;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.116-124
    • /
    • 2019
  • Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.

An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine

  • Li, Wenyu;Yin, Fan;Bu, Zixuan;Liu, Yuying;Zhang, Yongqing;Chen, Xiabing;Li, Shaowen;Li, Lu;Zhou, Rui;Huang, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.278-286
    • /
    • 2022
  • Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.