• 제목/요약/키워드: E. coli BL21 (DE3)

검색결과 159건 처리시간 0.037초

Effect of Environmental Factors on In Vivo Folding of Bacillus macerans Cyclodextrin Glycosyltransferase in Recombinant Escherichia coli

  • Jin, Hee-Hyun;Han, Nam-Soo;Kweon, Dae-Hyuk;Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.92-96
    • /
    • 2001
  • Effect of environmental factors on the expression of soluble forms of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli BL21(DE3)pLysE:pTCGT1 were investigated. The amount of soluble CGTase produced in the cell was measured by determining its enzymatic activity. The soluble fractionof the enzyme was increased by lowering the culture temperature to $30{\circ}C$ and medium pH to 5.8 compared to the enzyme production in LB medium at $37^{\circ}C$ and pH7.0. Addition of 0.2 M NaCl enhanced enzyme expression levels at the expense of cell growth. Glycine betaine that was added after 3 h of induction protected not only the cell growth from hig osmotic pressue but also hepld in vivo folding of CGTase in recombinant E. coli. Addition of 1 mM $CaCl_2$ was also effective in the expression of soluble CGTase, resulting in 15 U/ml of the enzyme activity.

  • PDF

High-Level Production of Human Papillomavirus (HPV) Type 16 L1 in Escherichia coli

  • Bang, Hyun Bae;Lee, Yoon Hyeok;Lee, Yong Jae;Jeong, Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.356-363
    • /
    • 2016
  • Human papillomavirus (HPV), a non-enveloped, double-stranded DNA tumor virus, is a primary etiological agent of cervical cancer development. As a potential tool for prophylactic vaccination, the development of virus-like particles (VLPs) containing the HPV16 L1 capsid protein is highly desired. In this study, we developed a high-level expression system of the HPV16 L1 in Escherichia coli for the purpose of VLP development. The native gene of HPV16 L1 has many rare codons that cause the early termination of translation and result in the production of truncated forms. First, we optimized the codon of the HPV16 L1 gene to the preferable codons of E. coli, and we succeeded in producing the full-size HPV16 L1 protein without early termination. Next, to find the best host for the production of HPV16 L1, we examined a total of eight E. coli strains, and E. coli BL21(DE3) with the highest yield among the strains was selected. With the selected host-vector system, we did a fed-batch cultivation in a lab-scale bioreactor. Two different feeding solutions (complex and defined feeding solutions) were examined and, when the complex feeding solution was used, a 6-fold higher production yield (4.6 g/l) was obtained compared with that with the defined feeding solution.

Overexpression of YbeD in Escherichia coli Enhances Thermotolerance

  • Kim, Sinyeon;Kim, Youngshin;Yoon, Sung Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.401-409
    • /
    • 2019
  • Heat-resistant microbial hosts are required for bioprocess development using high cell density cultivations at the industrial scale. We report that the thermotolerance of Escherichia coli can be enhanced by overexpressing ybeD, which was known to encode a hypothetical protein of unknown function. In the wild-type E. coli BL21(DE3), ybeD transcription level increased over five-fold when temperature was increased from $37^{\circ}C$ to either $42^{\circ}C$ or $46^{\circ}C$. To study the function of ybeD, a deletion strain and an overexpression strain were constructed. At $46^{\circ}C$, in comparison to the wild type, the ybeD-deletion reduced cell growth half-fold, and the ybeD-overexpression promoted cell growth over two-fold. The growth enhancement by ybeD-overexpression was much more pronounced at $46^{\circ}C$ than $37^{\circ}C$. The ybeD-overexpression was also effective in other E. coli strains of MG1655, W3110, DH10B, and BW25113. These findings reveal that ybeD gene plays an important role in enduring high-temperature stress, and that ybeD-overexpression can be a prospective strategy to develop thermotolerant microbial hosts.

Direct synthesis of Neu5Ac from GlcNAc using NALasc and GlcNAc 2-epimerase

  • 이정규;이정오;이선구;김병기
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.210-214
    • /
    • 2001
  • GlcNAc 2-epimerase gene from human was cloned. However GIcNAc 2-epimerase was expressed in E. coli as inclusion body formation. Several approaches were tried such as expression in low temperature and low concentration of IPTG. With these treatments production of active form of human GIcNAc 2-epimerase ι ,vas enhanced. For the direct synthesis of NeuAc from GlcNAc and pyruvate, NALase and GlcNAc 2-epimerase were characterized in terms of temperature effect on activity. equilibrium and stability, inhibition by pyruvate etc. For cheap and ease preparation of both the NALase and GlcNAc 2-epimerase, pEN24ma vector was made. which express both the NALasc and GIcNAc 2-epimerase simultaneously. In addition, E. coli BL21(DE3) harboring two plasmids was also made. Of the two systems, the latter was better for the expression of both enzymes.

  • PDF

Enzymatic Manufacture of Deoxythymidine-5'-Triphosphate with Permeable Intact Cells of E. coli Coexpressing Thymidylate Kinase and Acetate Kinase

  • Zhang, Jiao;Qian, Yahui;Ding, Qingbao;Ou, Ling
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2034-2042
    • /
    • 2015
  • A one-pot process of enzymatic synthesis of deoxythymidine-5'-triphosphate (5'-dTTP) employing whole cells of recombinant Escherichia coli coexpressing thymidylate kinase (TMKase) and acetate kinase (ACKase) was developed. Genes tmk and ack from E. coli were cloned and inserted into pET28a(+), and then transduced into E. coli BL21 (DE3) to form recombinant strain pTA in which TMKase and ACKase were simultaneously overexpressed. It was found that the relative residual specific activities of TMKase and ACKase, in pTA pretreated with 20 mM ethylene diamine tetraacetic acid (EDTA) at 25℃ for 30 min, were 94% and 96%, respectively. The yield of 5'-dTTP reached above 94% from 5 mM deoxythymidine 5'-monophosphate (5'-dTMP) and 15 mM acetyl phosphate catalyzed with intact cells of pTA pretreated with EDTA. The process was so effective that only 0.125 mM adenosine-5'-triphosphate was sufficient to deliver the phosphate group from acetyl phosphate to dTMP and dTDP.

E. coli 발현 시스템에 의해 생산된 recombinant human bone morphogenetic protein-2의 정제와 생물학적 활성 (Purification and biological activity of recombinant human bone morphogenetic protein-2 produced by E. coli expression system)

  • 최경희;문금옥;김수홍;윤정호;장경립;조규성
    • Journal of Periodontal and Implant Science
    • /
    • 제38권1호
    • /
    • pp.41-50
    • /
    • 2008
  • Purpose: Bone morphogenetic protein-2(BMP-2) has been shown to possess significant osteoinducitve potential. There have been attempts to overcome a limitation of mass production, and economical efficiency of BMP. The aim of this study was to produce recombinant human BMP-2(rhBMP-2) from E. coli in a large scale and evaluate its biological activity. Materials and Methods: The E.coli strain BL21(DE3) was used as a host for rhBMP-2 production. Dimerized rhBMP-2 was purified by affinity chromatography using Heparin column. To determine the physicochemical properties of the rhBMP-2 expressed in E. coli, we examined the HPLC profile and performed Western blot analysis. The effect of the purified rhBMP-2 dimer on osteoblast differentiation was examined by alkaline phosphatase (ALP) activity and representing morphological change using C2C12 cell. Results: E. coli was genetically engineered to produce rhBMP-2 in a non-active aggregated form. We have established a method which involves refolding and purifying a folded rhBMP-2 dimer from non-active aggregates. The purified rhBMP-2 homodimer was characterized by SDS-PAGE as molecular weight of about 28kDa and eluted at 34% acetonitrile, 13.27 min(retention time) in the HPLC profile and detected at Western blot. The purified rhBMP-2 dimer stimulated ALP activity and induced the transformation from myogenic differentiation to osteogenic differentiation. Conclusion: rhBMP-2 was produced in E. coli using genetic engineering. The purified rhBMP-2 dimer stimulated ALP activity and induced the osteogenic differentiation of C2C12 cells.

DNA Shuffling of aprE Genes to Increase Fibrinolytic Activity and Thermostability

  • Yao, Zhuang;Jeon, Hye Sung;Yoo, Ji Yeon;Kang, Yun Ji;Kim, Min Jae;Kim, Tae Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.800-807
    • /
    • 2022
  • Four aprE genes encoding alkaline serine proteases from B. subtilis strains were used as template genes for family gene shuffling. Shuffled genes obtained by DNase I digestion followed by consecutive primerless and regular PCR reactions were ligated with pHY300PLK, an E. coli-Bacillus shuttle vector. The ligation mixture was introduced into B. subtilis WB600 and one transformant (FSM4) showed higher fibrinolytic activity. DNA sequencing confirmed that the shuffled gene (aprEFSM4) consisted of DNA mostly originated from either aprEJS2 or aprE176 in addition to some DNA from either aprE3-5 or aprESJ4. Mature AprEFSM4 (275 amino acids) was different from mature AprEJS2 in 4 amino acids and mature AprE176 in 2 amino acids. aprEFSM4 was overexpressed in E. coli BL21 (DE3) by using pET26b(+) and recombinant AprEFSM4 was purified. The optimal temperature and pH of AprEFSM4 were similar to those of parental enzymes. However, AprEFM4 showed better thermostability and fibrinogen hydrolytic activity than the parental enzymes. The results indicated that DNA shuffling could be used to improve fibrinolytic enzymes from Bacillus sp. for industrial applications.

Cloning, Expression, and Purification of Recombinant Uricase Enzyme from Pseudomonas aeruginosa Ps43 Using Escherichia coli

  • Shaaban, Mona I.;Abdelmegeed, Eman;Ali, Youssif M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.887-892
    • /
    • 2015
  • Uricase is an important microbial enzyme that can be used in the clinical treatment of gout, hyperuricemia, and tumor lysis syndrome. A total of 127 clinical isolates of Pseudomonas aeruginosa were tested for uricase production. A Pseudomonas strain named Ps43 showed the highest level of native uricase enzyme expression. The open reading frame of the uricase enzyme was amplified from Ps43 and cloned into the expression vector pRSET-B. Uricase was expressed using E. coli BL21 (DE3). The ORF was sequenced and assigned GenBank Accession No. KJ718888. The nucleotide sequence analysis was identical to the coding sequence of uricase gene puuDof P. aeruginosa PAO1. We report the successful expression of P. aeruginosa uricase in Escherichia coli. E. coli showed an induced protein with a molecular mass of about 58 kDa that was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. We also established efficient protein purification using the Ni-Sepharose column with activity of the purified enzyme of 2.16 IU and a 2-fold increase in the specific activity of the pure enzyme compared with the crude enzyme.

Biological Synthesis of Genistein in Escherichia coli

  • Kim, Bong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.770-776
    • /
    • 2020
  • Genistein is a type of isoflavonoid found predominantly in leguminous plants. Genistein has diverse biological activities, such as anthelmintic and antioxidant effects, as well as inhibitory effects on the growth of several cancers. In addition, genistein is well known as a phytoestrogen. In this study, we attempted to biologically synthesize genistein from either p-coumaric acid or naringenin using Escherichia coli as a biotransformation host. Four genes, Os4CL, PeCHS, RcIFS, and OsCPR, were used for genistein production. To functionally express RcIFS and OsCPR, two members of the cytochrome P450 family, in E. coli, the membrane-binding anchor domain of each gene was removed, and RcIFS and OsCPR were translationally fused to generate an RcIFS-OsCPR hybrid. Os4CL and PeCHS, or the RcIFS-OsCPR hybrid, were then transformed into E. coli BL21(DE3). Using these strains, we optimized our culture system at a laboratory scale in terms of the cell density, concentrations of substrate and isopropyl-β-D-thiogalactoside, temperature, and culture medium. Under the optimized culture conditions, genistein was produced at up to 35 mg/l and 18.6 mg/l using naringenin and p-coumaric acid, respectively.

Kocuria gwangalliensis strain SJ2에서 유래된 D-xylulose kinase 유전자의 클로닝과 특성 연구 (Cloning and Characterization of D-xylulose Kinase from Kocuria gwangalliensis Strain SJ2)

  • 정태혁;황태경;서용배;김영태
    • 생명과학회지
    • /
    • 제25권5호
    • /
    • pp.507-514
    • /
    • 2015
  • D-Xylulose는 nonoxidative pentose phosphate 경로를 통해 glycolysis 과정으로 들어가기 전에 D-xylulose kinase에 의해서 D-xylulose-5-phosphate로 인산화 된다. K. gwangalliensis strain SJ2로부터 D-xylulose kinase (XK)를 암호화하는 유전자는 E. coli를 이용하여 서열분석 및 발현 하였으며, XK 유전자의 염기서열 1,419 bp로 구성되어 있으며 463개의 아미노산 잔기를 암호화하고 있다. 분석결과를 통해 XK 유전자가 진화과정 동안 잘 보존되었음을 보여 주었다. XK 유전자의 발현을 위해 pCold-II 발현 벡터에 클로닝 하였으며 클로닝 된 플라스미드는 E. coli strain BL21 (DE3)에 형질전환 하여 IPTG를 이용해 발현을 유도하였다. 재조합 된 XK 단백질의 크기는 약 48 kDa이었다. 이 발현된 단백질은 affinity chromatography를 이용하여 정제하였으며 D-xylulose kinase에 따른 enzymatic activity를 분석하였다. D-xylulose와 ATP로 실행한 XK enzyme kinetic 연구는 각각 250±20 μM과 1,300±50 μM의 Km value를 보였다. 본 연구를 통해 얻어진 결과는 분자적 수준에서 D-xylulose kinase의 특성연구의 보다 넓은 지식적 기초를 제공할 것으로 사료된다.