• 제목/요약/키워드: E-learning of engineering department

검색결과 334건 처리시간 0.031초

건설현장 내 객체검출 정확도 향상을 위한 저조도 영상 강화 기법에 관한 연구 (A Study on Low-Light Image Enhancement Technique for Improvement of Object Detection Accuracy in Construction Site)

  • 나종호;공준호;신휴성;윤일동
    • 터널과지하공간
    • /
    • 제34권3호
    • /
    • pp.208-217
    • /
    • 2024
  • AI영상 기반 건설현장 안전관리 모니터링 시스템 개발 및 적용하는 추세에 다양한 환경변화에 따른 위험 객체 탐지 딥러닝 모델 개발에 많은 연구적 관심이 쏟아지고 있다. 여러 환경 변화요인 중 저조도 조건에서 객체 검출 모델의 정확도는 현저히 감소하며, 저조도 환경을 고려한 학습을 수행하더라도 일관적인 객체 탐지 정확도를 확보할 수 없다. 이에 따라 저조도 영상을 강화하는 영상 전처리 기술의 필요성이 대두된다. 따라서, 본 논문은 취득된 건설 현장 영상 데이터를 활용하여 다양한 딥러닝 기반 저조도 영상 강화 모델(GLADNet, KinD, LLFlow, Zero-DCE)을 학습하고, 모델별 저조도 영상 강화 성능을 비교 검증실험을 진행하였다. 저조도 강화된 영상을 시각적으로 검증하였고, 영상품질 평가 지수(PSNR, SSIM, Delta-E)를 도입하여 정량적으로 분석하였다. 실험 결과, GLADNet의 저조도 영상 강화 성능이 정량·정성적 평가에서 우수한 결과를 보여줬으며, 저조도 영상 강화 모델로 적합한 것으로 분석되었다. 향후 딥러닝 기반 객체 검출 모델에 저조도 영상 강화 기법이 전처리 단계로 적용한다면, 저조도 환경에서 일관된 객체 검출 성능을 확보할 것으로 예상된다.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.

머신러닝 기반의 공업용수 정수장 응집제 주입률 결정 (Machine Learning Based Coagulant Rate Decision Model for Industrial Water Treatment Plant)

  • 박경수;이유진;노하늘;허준;정승환
    • 산업경영시스템학회지
    • /
    • 제47권3호
    • /
    • pp.68-74
    • /
    • 2024
  • This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.

수문학적 활용을 위한 머신러닝 기반의 강우보정기술 개발 (The Development of a Rainfall Correction Technique based on Machine Learning for Hydrological Applications)

  • 이영미;고철민;신성철;김병식
    • 한국환경과학회지
    • /
    • 제28권1호
    • /
    • pp.125-135
    • /
    • 2019
  • For the purposes of enhancing usability of Numerical Weather Prediction (NWP), the quantitative precipitation prediction scheme by machine learning has been proposed. In this study, heavy rainfall was corrected for by utilizing rainfall predictors from LENS and Radar from 2017 to 2018, as well as machine learning tools LightGBM and XGBoost. The results were analyzed using Mean Absolute Error (MAE), Normalized Peak Error (NPE), and Peak Timing Error (PTE) for rainfall corrected through machine learning. Machine learning results (i.e. using LightGBM and XGBoost) showed improvements in the overall correction of rainfall and maximum rainfall compared to LENS. For example, the MAE of case 5 was found to be 24.252 using LENS, 11.564 using LightGBM, and 11.693 using XGBoost, showing excellent error improvement in machine learning results. This rainfall correction technique can provide hydrologically meaningful rainfall information such as predictions of flooding. Future research on the interpretation of various hydrologic processes using machine learning is necessary.

4차원 Light Field 영상에서 Dictionary Learning 기반 초해상도 알고리즘 (Dictionary Learning based Superresolution on 4D Light Field Images)

  • 이승재;박인규
    • 방송공학회논문지
    • /
    • 제20권5호
    • /
    • pp.676-686
    • /
    • 2015
  • Light field 카메라를 이용하여 영상을 취득한 후 다양한 응용 프로그램으로 확장이 가능한 4차원 light field 영상은 일반적인 2차원 공간영역(spatial domain)과 추가적인 2차원 각영역(angular domain)으로 구성된다. 그러나 이러한 4차원 light field 영상을 유한한 해상도를 가진 2차원 CMOS 센서로 취득하므로 저해상도의 제약이 존재한다. 본 논문에서는 이러한 4차원 light field 영상이 가지는 해상도 제약 조건을 해결하기 위하여, 4차원 light field 영상에 적합한 딕셔너리 학습 기반(dictionary learning-based) 초해상도(superresolution) 알고리즘을 제안한다. 제안하는 알고리즘은 4차원 light field 영상으로부터 추출한 많은 수의 4차원 패치(patch)들을 바탕으로 딕셔너리를 구성 및 훈련하며, 학습된 딕셔너리를 바탕으로 저해상도 입력 영상의 해상도를 향상시키는 과정을 수행한다. 제안하는 알고리즘은 공간영역과 각영역의 해상도를 동시에 각각 2배 향상시킨다. 실험에 사용된 영상은 상용 light field 카메라인 Lytro에서 취득하였고 기존의 알고리즘과의 비교를 통해 제안하는 알고리즘의 우수성을 검증한다.

국내 건설현장 외국인 근로자 안전교육 모델 개발 (A Development of Safety Education Model for a Foreign Worker in Domestic Construction Site)

  • 정경환;이혜인;권혜리;박정은;신윤석
    • 한국건축시공학회지
    • /
    • 제15권2호
    • /
    • pp.227-235
    • /
    • 2015
  • 국내 건설현장에서는 외국인 근로자들의 수가 증가함에 따라 그들에게 적합한 안전교육체계의 개발이 요구되고 있다. 본 연구에서는 외국인 근로자들을 위한 안전교육 모델을 제안하고 실제로 프로토타입의 안전교육시스템을 구현하였다. 그 결과로 이러닝 시스템 기반의 안전교육 모델을 개발하였다. 이 시스템은 국내 건설현장에서 근무하고 있는 외국인 근로자들이 안전교육을 잘 받을 수 있도록 지원해 줄 수 있을 것이다. 또한 현장의 안전관리자로 하여금 외국인 근로자들을 잘 교육하고 관리할 수 있도록 지원해 줄 것이다.

An approach to visual pattern recognition by neural network system

  • Hatakeyama, Yasuhiro;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.61-64
    • /
    • 1992
  • In this paper, a visual pattern recognition system is proposed, which can recognize both a pattern and its location. This system, referred to as the expanded neocognitron, has the following capabilities: (1) A higher performance in extraction of features, and (2) A new capability for recognizing the locations of patterns. This system adopts the learning and recognizing mechanism of the neocognitron. First, the ability to classify pattern is enhanced by improving the mechanisms of feature extraction and learning algorithm. Second, the function of detecting the location of each pattern is realized by developing an architecture which does not reduce structure, i.e., the unit density is constant all the way from the input stage to the output stage.

  • PDF

Flexible operation and maintenance optimization of aging cyber-physical energy systems by deep reinforcement learning

  • Zhaojun Hao;Francesco Di Maio;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1472-1479
    • /
    • 2024
  • Cyber-Physical Energy Systems (CPESs) integrate cyber and hardware components to ensure a reliable and safe physical power production and supply. Renewable Energy Sources (RESs) add uncertainty to energy demand that can be dealt with flexible operation (e.g., load-following) of CPES; at the same time, scenarios that could result in severe consequences due to both component stochastic failures and aging of the cyber system of CPES (commonly overlooked) must be accounted for Operation & Maintenance (O&M) planning. In this paper, we make use of Deep Reinforcement Learning (DRL) to search for the optimal O&M strategy that, not only considers the actual system hardware components health conditions and their Remaining Useful Life (RUL), but also the possible accident scenarios caused by the failures and the aging of the hardware and the cyber components, respectively. The novelty of the work lies in embedding the cyber aging model into the CPES model of production planning and failure process; this model is used to help the RL agent, trained with Proximal Policy Optimization (PPO) and Imitation Learning (IL), finding the proper rejuvenation timing for the cyber system accounting for the uncertainty of the cyber system aging process. An application is provided, with regards to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED).

온라인학습플랫폼을 활용한 맞춤형 교육훈련 모델 수립방안에 관한 연구 (A Study on Development of Customized Education and Training Model Using Online Learning Platform)

  • 임경화;신정민;이수경
    • 실천공학교육논문지
    • /
    • 제11권1호
    • /
    • pp.75-86
    • /
    • 2019
  • 본 연구에서는 점차 디지털 기반의 교육 활성화를 통해 혁신적 고등교육의 변화를 추구하는 세계적 흐름에 따라 학부 교육과 평생직업능력개발에서 활용 가능한 이러닝 기반의 맞춤형 교육 모델을 구안하였다. 국내외적으로 온라인 학습 시스템을 중심으로 교육과정의 형태와 내용이 변화하고 있어, 온라인 학습 플랫폼을 활용과 교육의 확장은 전반적인 고등교육 체제를 변화시키는 주요 요인으로 작용하고 있다. 이에 본 연구는 온라인학습플랫폼을 활용한 맞춤형 교육 모델을 수립하기 위하여, 주요 해외 선진 교육 사례를 분석하여 맞춤형 학습의 기본 방향을 학습자 맞춤형, 역량 맞춤형, 그리고 4차 산업혁명 선도형 인재 양성 교육 맞춤형으로 설정한 후 학부 및 평생직업능력개발 전문가를 대상으로 FGI를 실시하였다. 연구결과, 온라인학습플랫폼을 활용한 맞춤형 교육 모델로 학부교육에서 활용 가능한 학위형 모델과 평생직업능력개발 분야에서 활용 가능한 비학위형 모델을 도출하고 각각의 운영전략을 제언하였다.

기계학습 기반 노후 철근콘크리트 건축물의 축력허용범위 산정 방법 (ML-based Allowable Axial Loading Estimation of Existing RC Building Structures)

  • 황희진;오근영;강재도;신지욱
    • 한국지진공학회논문집
    • /
    • 제28권5호
    • /
    • pp.257-266
    • /
    • 2024
  • Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.