• Title/Summary/Keyword: E-beam evaporator deposition

Search Result 27, Processing Time 0.032 seconds

Ion Beam Assisted Deposition System의 제작 및 자동화

  • 손영호
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.27-27
    • /
    • 1998
  • 진공기술의 응용과 진공환경의 이용은 더 이상 논하지 않더라도 산업 전반에 그 충요성이 점점 더 커가고 있다. 이러한 여건에도 불구하고 진공율 이용하는 system 개밟의 국산화는 수 입하는 system으$\mid$ 수에 비하여 절대적으로 부족하며, 또한 개발하는 system의 자동화는 거의 이 루어지지 않고 있으며, 자동화된 진공판련 system은 거의 대부분 수입에 의흔하고 있다. 실험 실 규모에서부터 System올 하나하나 개밭하고, 이톨 자동화하는 노력과 일이 진행됨다면 산업 응용에 있어서도 자연스럽게 자동화된 system으$\mid$ 개발이 이루어 질 것이다 .. system 자동화는 상 품수명의 단축과 이에 따른 다품종 소량을 요구하는 시장수요에 대응하고, 인력절감과 고풀짙 화로 생산성 향상의 요구에 대응하기 위하여 필요하다. 본 연 구에 서 는 e-beam evaporator로 evaporation하면 서 ion beam으로 assist하여 thin film율 제 작하는 IBAD vacuum system율 싫 계 및 제 작하고[1,2], PLC[3,떼톨 이 용하여 system 자동화톨 하였다 .. thin film 제작 process는 먼저 기본 진공상태로 만뚫고 난 뒤, e-beam evaporator로 e evaporation하면서 ion beam source로 assist하여 substrate 011 thin film율 제조한다 226;. thin film올 제 조하면서 thickness monitor로 sample의 thickness rate톨 control 하고, sample의 균얼성과 밀착 성을 고려하여 substrate톨 rotation 및 heating 할 수 있도록 싫계, 제작하였다. 양질의 박막올 제조하기 위해서 진공환경이 좋은 상태로 제공되어야 한다. 이톨 위하여 oil free operation 0 I 가 능한 dry pump와 turbo molecular pump로 고진공 배기 하였다. 진공도의 흑점은 thermal effect 툴 고려하여 cold cathode ion gauge률 사용하였고, intro chamber와 main chamber 사이에는 g gate valve톨 설치하여 벌도로 운용되도록 하였다. 이러한 process를 박막의 두께, 진공도, 시 간, 온도, 공정 동의 조건올 기훈으로 자동화한 것이다. 또한 정전과 단수에 대한 interlock 기능 도 고려하였다.하였다.

  • PDF

Electrical and Dielectric Properties of MgO Thin Films Prepared through Electron-Beam Deposition

  • You Yil-Hwan;Kim Jung-Seok;Hwang Jin-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.51-55
    • /
    • 2006
  • MgO thin films were prepared through electron-beam deposition onto ITO-coated glass substrates in order to measure electrical, dielectric, and microstructural properties. Design of experiments was performed in this study with the aim to understanding of the effects of processing variables, e.g., substrate temperature and filament current of an e-beam evaporator statistically. Leakage currents, relative dielectric constants, and diffraction intensities of MgO thin films were analyzed statistically, following the analysis procedure provided in the design of experiments. The leakage current level of MgO thin films has been found to be statistically significant at the level of $\alpha=0.1$.

  • PDF

Effects of surface geometry of MgO protective layer for AC-PDPs

  • Park, Sun-Young;Moon, Sung-Hwan;Heo, Tae-Wook;Kim, Jae-Hyuk;Lee, Joo-Hwi;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1395-1398
    • /
    • 2007
  • MgO thin films were deposited by e-beam evaporator using the 2-step method for alternate current plasma display panels (AC-PDPs). Glancing angle deposition (GLAD) method was employed to produce various surface geometry of the thin film; the bottom layer was deposited on a substrate by normal e-beam evaporation method and the top layer was deposited on bottom layer with $85^{\circ}$ by GLAD method. Results show that firing and sustain voltages improved as the sharpness of surface and isolated columnar structures increases, respectively.

  • PDF

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique

  • Kannan, V.;Choi, Jong-Hyeok;Park, Hyun-Chang;Kim, Hyun-Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1399-1402
    • /
    • 2018
  • Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.

The Effect of Annealing on Corrosion Behavior of CoCrTa/CrNi Magnetic Recording Media (CoCrTa/CrNi 자기기록매체의 열처리에 따른 부식거동 변화)

  • 우준형;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.210-216
    • /
    • 1999
  • The objective of this paper is to investigate corrosion behaviors of CoCrTa/CrNi thin film and post heat-treatment effect. An electron beam evaporator was used for films deposition. After evaporation, post heat-treatment was carried out under $5.0{\times}10^3$ Torr vacuum condition. Annealing temperature and time were 400 $^{\circ}C$ and 30 min, respectively. To understand the effect of annealing on corrosion behavior of CoCrTa/CrNi, potentiodynamic polarization technique and accelerated corrosion chamber test were undertaken. Corrosion potential is higher for the annealed samples (CoCrTa 400$\AA$/CrNi 1000$\AA$) than for as-deposited one. This is attributed to an enrichment of Cr in the surface layer of the thinfilm resulting in a more corrosion resistant material.

  • PDF

Ion assisted deposition of $TiO_2$, $ZrO_2$ and $SiO_xN_y$ optical thin films

  • Cho, H.J.;Hwangbo, C.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.75-79
    • /
    • 1997
  • Optical and mechanical characteristics of $TiO-2, ZrO_2 \;and\; SiO_xN_y$ thin films prepared by ion assisted deposition (IAD) were investigated. IAD films were bombarded by Ar or nitrogen ion beam from a Kaufman ion source while they were grown in as e-beam evaporator. The result shows that the Ae IAD increases the refractive index and packing density of $TiO_2 films close to those of the bulk. For $ZrO_2$ films the Ar IAD increases the average refractive index decreases the negative inhomogeneity of refractive index and reverses to the positive inhomogeneity. The optical properties result from improved packing density and denser outer layer next to air The Ar-ion bombardment also induces the changes in microstructure of $ZrO_2$ films such as the preferred (111) orientation of cubic phase increase in compressive stress and reduction of surface roughness. Inhomogeneous refractive index SiOxNy films were also prepared by nitrogen IAD and variable refractive index of $SiO_xN_y$ film was applied to fabricate a rugate filter.

  • PDF

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length (탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향)

  • Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

Effect of Deposition and Annealing Temperature on Structural, Electrical and Optical Properties of Ag Doped ZnO Thin Films

  • Jeong, Eun-Kyung;Kim, In-Soo;Kim, Dae-Hyun;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 2008
  • The effects of the deposition and annealing temperature on the structural, electrical and optical properties of Ag doped ZnO (ZnO : Ag) thin films were investigated. All of the films were deposited with a 2wt% $Ag_2O-doped$ ZnO target using an e-beam evaporator. The substrate temperature varied from room temperature (RT) to $250^{\circ}C$. An undoped ZnO thin film was also fabricated at $150^{\circ}C$ as a reference. The as-grown films were annealed in temperatures ranging from 350 to $650^{\circ}C$ for 5 h in air. The Ag content in the film decreased as the deposition and the post-annealing temperature increased due to the evaporation of the Ag in the film. During the annealing process, grain growth occurred, as confirmed from XRD and SEM results. The as-grown film deposited at RT showed n-type conduction; however, the films deposited at higher temperatures showed p-type conduction. The films fabricated at $150^{\circ}C$ revealed the highest hole concentration of $3.98{\times}1019\;cm^{-3}$ and a resistivity of $0.347\;{\Omega}{\cdot}cm$. The RT PL spectra of the as-grown ZnO : Ag films exhibited very weak emission intensity compared to undoped ZnO; moreover, the emission intensities became stronger as the annealing temperature increased with two main emission bands of near band-edge UV and defect-related green luminescence exhibited. The film deposited at $150^{\circ}C$ and annealed at $350^{\circ}C$ exhibited the lowest value of $I_{vis}/I_{uv}$ of 0.05.