• Title/Summary/Keyword: E-beam Treatment

Search Result 154, Processing Time 0.025 seconds

X-ray Photoelectron Spectroscopic Analysis of Modified MWCNT and Dynamic Mechanical Properties of E-beam Cured Epoxy Resins with the MWCNT

  • Lee, Young-Seak;Im, Ji-Sun;Yun, Seok-Min;Nho, Young-Chang;Kang, Phil-Hyun;Jin, Hang-Kyo
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.314-319
    • /
    • 2009
  • The surface treatment effects of reinforcement filler were investigated based on the dynamic mechanical properties of mutiwalled carbon nanotubes (MWCNTs)/epoxy composites. The as-received MWCNTs(R-MWCNTs) were chemically modified by direct oxyfluorination method to improve the dispersibility and adhesiveness with epoxy resins in composite system. In order to investigate the induced functional groups on MWCNTs during oxyfluorination, X-ray photoelectron spectroscopy was used. The thermo-mechanical property of MWCNTs/epoxy composite was also measured based on effects of oxyfluorination treatment of MWCNTs. The storage modulus of MWCNTs/epoxy composite was enhanced about 1.27 times through oxyfluorination of MWCNTs fillers at $25^{\circ}C$. The storage modulus of oxyfluorinated MWCNTs (OF73-MWCNTs) reinforced epoxy composite was much higher than that of R-MWCNTs/epoxy composite. It revealed that oxygen content led to the efficient carbon-fluorine covalent bonding during oxyfluorination. These functional groups on surface modified MWCNTs induced by oxyfluorination strikingly made an important role for the reinforced epoxy composite.

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

National trends in radiation dose escalation for glioblastoma

  • Wegner, Rodney E.;Abel, Stephen;Horne, Zachary D.;Hasan, Shaakir;Verma, Vivek;Ranjan, Tulika;Williamson, Richard W.;Karlovits, Stephen M.
    • Radiation Oncology Journal
    • /
    • v.37 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • Purpose: Glioblastoma (GBM) carries a high propensity for in-field failure despite trimodality management. Past studies have failed to show outcome improvements with dose-escalation. Herein, we examined trends and outcomes associated with dose-escalation for GBM. Materials and Methods: The National Cancer Database was queried for GBM patients who underwent surgical resection and external-beam radiation with chemotherapy. Patients were excluded if doses were less than 59.4 Gy; dose-escalation referred to doses ≥66 Gy. Odds ratios identified predictors of dose-escalation. Univariable and multivariable Cox regressions determined potential predictors of overall survival (OS). Propensity-adjusted multivariable analysis better accounted for indication biases. Results: Of 33,991 patients, 1,223 patients received dose-escalation. Median dose in the escalation group was 70 Gy (range, 66 to 89.4 Gy). The use of dose-escalation decreased from 8% in 2004 to 2% in 2014. Predictors of escalated dose were African American race, lower comorbidity score, treatment at community centers, decreased income, and more remote treatment year. Median OS was 16.2 months and 15.8 months for the standard and dose-escalated cohorts, respectively (p = 0.35). On multivariable analysis, age >60 years, higher comorbidity score, treatment at community centers, decreased education, lower income, government insurance, Caucasian race, male gender, and more remote year of treatment predicted for worse OS. On propensity-adjusted multivariable analysis, age >60 years, distance from center >12 miles, decreased education, government insurance, and male gender predicted for worse outcome. Conclusion: Dose-escalated radiotherapy for GBM has decreased over time across the United States, in concordance with guidelines and the available evidence. Similarly, this large study did not discern survival improvements with dose-escalation.

Anatomical analysis of the resected roots of mandibular first molars after failed non-surgical retreatment

  • Yoon, Jiyoung;Cho, Byeong-Hoon;Bae, Jihyun;Choi, Yonghoon
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.16.1-16.9
    • /
    • 2018
  • Objectives: Understanding the reason for an unsuccessful non-surgical endodontic treatment outcome, as well as the complex anatomy of the root canal system, is very important. This study examined the cross-sectional root canal structure of mandibular first molars confirmed to have failed non-surgical root canal treatment using digital images obtained during intentional replantation surgery, as well as the causative factors of the failed conventional endodontic treatments. Materials and Methods: This study evaluated 115 mandibular first molars. Digital photographic images of the resected surface were taken at the apical 3 mm level and examined. The discolored dentin area around the root canal was investigated by measuring the total surface area, the treated areas as determined by the endodontic filling material, and the discolored dentin area. Results: Forty 2-rooted teeth showed discolored root dentin in both the mesial and distal roots. Compared to the original filled area, significant expansion of root dentin discoloration was observed. Moreover, the mesial roots were significantly more discolored than the distal roots. Of the 115 molars, 92 had 2 roots. Among the mesial roots of the 2-rooted teeth, 95.7% of the roots had 2 canals and 79.4% had partial/complete isthmuses and/or accessory canals. Conclusions: Dentin discoloration that was not visible on periapical radiographs and cone-beam computed tomography was frequently found in mandibular first molars that failed endodontic treatment. The complex anatomy of the mesial roots of the mandibular first molars is another reason for the failure of conventional endodontic treatment.

Reduced Ovarian Cancer Incidence in Women Exposed to Low Dose Ionizing Background Radiation or Radiation to the Ovaries after Treatment for Breast Cancer or Rectosigmoid Cancer

  • Lehrer, Steven;Green, Sheryl;Rosenzweig, Kenneth E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2979-2982
    • /
    • 2016
  • Background: High dose ionizing radiation can induce ovarian cancer, but the effect of low dose radiation on the development of ovarian cancer has not been extensively studied. We evaluated the effect of low dose radiation and total background radiation, and the radiation delivered to the ovaries during the treatment of rectosigmoid cancer and breast cancer on ovarian cancer incidence. Materials and Methods: Background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States, 2011. Ovarian cancer incidence data are from the Centers for Disease Control and Prevention. Standardized incidence ratios (SIR) of ovarian cancer following breast cancer and rectosigmoid cancer are from Surveillance, Epidemiology, and End Results (SEER) data. Obesity data by US state are from the Centers for Disease Control and Prevention. Mean ages of US state populations are from the United States Census Bureau. Results: We calculated standardized incidence ratios (SIR) from Surveillance, Epidemiology, and End Results (SEER) data, which reveal that in 194,042 cases of breast cancer treated with beam radiation, there were 796 cases of ovarian cancer by 120+ months of treatment (0.41%); in 283, 875 cases of breast cancer not treated with radiation, there were 1,531 cases of ovarian cancer by 120+ months (0.54%). The difference in ovarian cancer incidence in the two groups was significant (p < 0.001, two tailed Fisher exact test). The small dose of scattered ovarian radiation (about 3.09 cGy) from beam radiation to the breast appears to have reduced the risk of ovarian cancer by 24%. In 13,099 cases of rectal or rectosigmoid junction cancer treated with beam radiation in the SEER data, there were 20 cases of ovarian cancer by 120+ months of treatment (0.15%). In 33,305 cases of rectal or rectosigmoid junction cancer not treated with radiation, there were 91 cases of ovarian cancer by 120+ months (0.27%). The difference in ovarian cancer incidence in the two groups was significant (p = 0.017, two tailed Fisher exact test). In other words, the beam radiation to rectum and rectosigmoid that also reached the ovaries reduced the risk of ovarian cancer by 44%. In addition, there was a significant inverse relationship between ovarian cancer in white women and radon background radiation (r = - 0.465. p = 0.002) and total background radiation (r = -0.456, p = 0.002). Because increasing age and obesity are risk factors for ovarian cancer, multivariate linear regression was performed. The inverse relationship between ovarian cancer incidence and radon background was significant (${\beta}=-0.463$, p = 0.002) but unrelated to age (${\beta}=-0.080$, p = 0.570) or obesity (${\beta}=-0.180$, p = 0.208). Conclusions: The reduction of ovarian cancer risk following low dose radiation may be the result of radiation hormesis. Hormesis is a favorable biological response to low toxin exposure. A pollutant or toxin demonstrating hormesis has the opposite effect in small doses as in large doses. In the case of radiation, large doses are carcinogenic. However, lower overall cancer rates are found in U.S. states with high impact radiation. Moreover, there is reduced lung cancer incidence in high radiation background US states where nuclear weapons testing was done. Women at increased risk of ovarian cancer have two choices. They may be closely followed (surveillance) or undergo immediate prophylactic bilateral salpingo-oophorectomy. However, the efficacy of surveillance is questionable. Bilateral salpingo-oophorectomy is considered preferable, although it carries the risk of surgical complications. The data analysis above suggests that low-dose pelvic irradiation might be a good third choice to reduce ovarian cancer risk. Further studies would be worthwhile to establish the lowest optimum radiation dose.

Enhancement of Sludge Dewaterability using a Starfish and the Radiation Technology (전자선과 불가사리 분말을 이용한 하수슬러지 탈수능 향상)

  • Yu, Dae Hyeon;Lee, Jae Gwang;Lee, Myeon Ju
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.681-687
    • /
    • 2004
  • This study was focused on the manufacturing method of a dewatering aid, which would reduce the water content of the sludge cake by enhancing the dewaterability of sewage sludge. The pretreatment technology for sludge by using radiation and among diverse discarded resources were starfish selected as the material to manufacture the dewatering aid. Starfish went through the process of washing, drying, and pulverizing. The starfish powder made in this process was applied to the digested sludge generated at the sewage treatment plant of D City, and its effects were investigated. The starfish powder that was 300 ${\mu}m$ in particle size was added to the irradiated digested sludge. After the application of the condensation process, the sludge with the starfish powder added was dewatered using the belt press and centrifuge, which were the traditional pressure dewatering devices. As the result, it reduced the water content of the sludge 20% higher than the dewatered cake with no dewatering aid added and irradiation. When the powder was added, it contributed to less use of the coagulant added. The more irradiation dose, the lower water content did the dewatered cake have and the more coagulant was needed for condensation, which seems to be a disadvantage that can be compensated for by the starfish dewatering aid. A small-scaled treatment of the study to a radiation technology and dewatering aid using a discarded resource confirmed the potential of dewaterability. Based on the results saying that the dewatering aid and radiation technology can improve dewatering effects using the traditional dewatering devices, this pretreatment technology will be expected to be applied to sewage treatment plants.

Definitive Concurrent Chemoradiotherapy in Cervical Cancer - a University of Malaya Medical Centre Experience

  • Zamaniah, W.I. Wan;Mastura, M.Y.;Phua, C.E.;Adlinda, A.;Marniza, S.;Rozita, A.M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8987-8992
    • /
    • 2014
  • Background: The efficacy of concurrent chemoradiotherapy in the treatment of locally advanced cervical cancer is well established. We aimed to investigate the long-term efficacy of definitive concurrent chemoradiotherapy for cervical cancer in the University of Malaya Medical Centre. Materials and Methods: A cohort of 60 patients with FIGO stage IB2-IVA cervical cancer who were treated with definitive concurrent chemoradiotherapy with cisplatin followed by intracavitary brachytherapy or external beam radiotherapy (EBRT) boost between November 2001 and May 2008 were analysed. Patients were initially treated with weekly intravenous cisplatin ($40mg/m^2$) concurrent with daily EBRT to pelvis of 45-50Gy followed by low dose rate brachytherapy or EBRT boost to tumour. Local control rate, progression free survival, overall survival and treatment related toxicities graded by the RTOG criteria were evaluated. Results: The mean age was 56. At the median follow-up of 72 months, the estimated 5-year progression-free survival (PFS) (median PFS 39 months) and the 5-year overall survival (OS) (median OS 51 months) were 48% and 50% respectively. The 5-year local control rate was 67.3%. Grade 3-4 late gastrointestinal and genitourinary toxicity occurred in 9.3% of patients. Conclusions: The 5-year PFS and the 5-year OS in this cohort were lower than in other institutions. More advanced stage at presentation, longer overall treatment time (OTT) of more than fifty-six days and lower total dose to point A were the potential factors contributing to a lower survival.

Fabrication of Mo Nano Patterns Using Nano Transfer Printing with Poly Vinyl Alcohol Mold (Poly Vinyl Alcohol 몰드를 이용한 Nano Transfer Printing 기술 및 이를 이용한 Mo 나노 패턴 제작 기술)

  • Yang, Ki-Yeon;Yoon, Kyung-Min;Han, Kang-Soo;Byun, Kyung-Jae;Lee, Heon
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.224-227
    • /
    • 2009
  • Nanofabrication is an essential process throughout industry. Technologies that produce general nanofabrication, such as e-beam lithography, dip-pen lithography, DUV lithography, immersion lithography, and laser interference lithography, have drawbacks including complicated processes, low throughput, and high costs, whereas nano-transfer printing (nTP) is inexpensive, simple, and can produce patterns on non-plane substrates and multilayer structures. In general nTP, the coherency of gold-deposited stamps is strengthened by using SAM treatment on substrates, so the gold patterns are transferred from stamps to substrates. However, it is hard to apply to transfer other metallic materials, and the existing nTP process requires a complicated surface treatment. Therefore, it is necessary to simplify the nTP technology to obtain an easy and simple method for fabricating metal patterns. In this paper, asnTP process with poly vinyl alcohol (PVA) mold was proposed without any chemical treatment. At first, a PVA mold was duplicated from the master mold. Then, a Mo layer, with a thickness of 20 nm, was deposited on the PVA mold. The Mo deposited PVA mold was put on the Si wafer substrate, and nTP process progressed. After the nTP process, the PVA mold was removed using DI water, and transferred Mo nano patterns were characterized by a Scanning electron micrograph (SEM) and Energy Dispersive spectroscopy (EDS).

Radiotherapy Technique of High Energy Electron (고에너지 전자선의 방사선 치료 기술)

  • SUH M.W.;PARK J.I.;CHOI H.S.;KIM W.Y.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1985
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefore, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed does, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under $3\%$ errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under $5\%$ errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatters; i.e., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF