• Title/Summary/Keyword: E-Commerce System

Search Result 916, Processing Time 0.023 seconds

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

A study on improving the accuracy of machine learning models through the use of non-financial information in predicting the Closure of operator using electronic payment service (전자결제서비스 이용 사업자 폐업 예측에서 비재무정보 활용을 통한 머신러닝 모델의 정확도 향상에 관한 연구)

  • Hyunjeong Gong;Eugene Hwang;Sunghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.361-381
    • /
    • 2023
  • Research on corporate bankruptcy prediction has been focused on financial information. Since the company's financial information is updated quarterly, there is a problem that timeliness is insufficient in predicting the possibility of a company's business closure in real time. Evaluated companies that want to improve this need a method of judging the soundness of a company that uses information other than financial information to judge the soundness of a target company. To this end, as information technology has made it easier to collect non-financial information about companies, research has been conducted to apply additional variables and various methodologies other than financial information to predict corporate bankruptcy. It has become an important research task to determine whether it has an effect. In this study, we examined the impact of electronic payment-related information, which constitutes non-financial information, when predicting the closure of business operators using electronic payment service and examined the difference in closure prediction accuracy according to the combination of financial and non-financial information. Specifically, three research models consisting of a financial information model, a non-financial information model, and a combined model were designed, and the closure prediction accuracy was confirmed with six algorithms including the Multi Layer Perceptron (MLP) algorithm. The model combining financial and non-financial information showed the highest prediction accuracy, followed by the non-financial information model and the financial information model in order. As for the prediction accuracy of business closure by algorithm, XGBoost showed the highest prediction accuracy among the six algorithms. As a result of examining the relative importance of a total of 87 variables used to predict business closure, it was confirmed that more than 70% of the top 20 variables that had a significant impact on the prediction of business closure were non-financial information. Through this, it was confirmed that electronic payment-related information of non-financial information is an important variable in predicting business closure, and the possibility of using non-financial information as an alternative to financial information was also examined. Based on this study, the importance of collecting and utilizing non-financial information as information that can predict business closure is recognized, and a plan to utilize it for corporate decision-making is also proposed.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.

Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai (K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로)

  • Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.197-218
    • /
    • 2019
  • In addition to economic growth and national income increase, China is also experiencing rapid growth in consumption of cosmetics. About 67% of the total trade volume of Chinese cosmetics is made by e-commerce and especially K-Beauty products, which are Korean cosmetics are very popular. According to previous studies, 80% of consumer goods such as cosmetics are affected by the word of mouth information, searching the product information before purchase. Mostly, consumers acquire information related to cosmetics through comments made by other consumers on SNS such as SINA Weibo and Wechat, and recently they also use information about beauty related video channels. Most of the previous online word-of-mouth researches were mainly focused on media itself such as Facebook, Twitter, and blogs. However, the informational characteristics and the expression forms are also diverse. Typical types are text, picture, and video. This study focused on these types. We analyze the unstructured data of SINA Weibo, the SNS representative platform of China, and Meipai, the video platform, and analyze the impact of K-Beauty brand sales by dividing online word-of-mouth information with quantity and direction information. We analyzed about 330,000 data from Meipai, and 110,000 data from SINA Weibo and analyzed the basic properties of cosmetics. As a result of analysis, the amount of online word-of-mouth information has a positive effect on the sales of cosmetics irrespective of the type of media. However, the online videos showed higher impacts than the pictures and texts. Therefore, it is more effective for companies to carry out advertising and promotional activities in parallel with the existing SNS as well as video related information. It is understood that it is important to generate the frequency of exposure irrespective of media type. The positiveness of the video media was significant but the positiveness of the picture and text media was not significant. Due to the nature of information types, the amount of information in video media is more than that in text-oriented media, and video-related channels are emerging all over the world. In particular, China has made a number of video platforms in recent years and has enjoyed popularity among teenagers and thirties. As a result, existing SNS users are being dispersed to video media. We also analyzed the effect of online type of information on the online cosmetics sales by dividing the product type of cosmetics into basic cosmetics and color cosmetics. As a result, basic cosmetics had a positive effect on the sales according to the number of online videos and it was affected by the negative information of the videos. In the case of basic cosmetics, effects or characteristics do not appear immediately like color cosmetics, so information such as changes after use is often transmitted over a period of time. Therefore, it is important for companies to move more quickly to issues generated from video media. Color cosmetics are largely influenced by negative oral statements and sensitive to picture and text-oriented media. Information such as picture and text has the advantage and disadvantage that the process of making it can be made easier than video. Therefore, complaints and opinions are generally expressed in SNS quickly and immediately. Finally, we analyzed how product diversity affects sales according to online word of mouth information type. As a result of the analysis, it can be confirmed that when a variety of products are introduced in a video channel, they have a positive effect on online cosmetics sales. The significance of this study in the theoretical aspect is that, as in the previous studies, online sales have basically proved that K-Beauty cosmetics are also influenced by word-of-mouth. However this study focused on media types and both media have a positive impact on sales, as in previous studies, but it has been proven that video is more informative and influencing than text, depending on media abundance. In addition, according to the existing research on information direction, it is said that the negative influence has more influence, but in the basic study, the correlation is not significant, but the effect of negation in the case of color cosmetics is large. In the case of temporal fashion products such as color cosmetics, fast oral effect is influenced. In practical terms, it is expected that it will be helpful to use advertising strategies on the sales and advertising strategy of K-Beauty cosmetics in China by distinguishing basic and color cosmetics. In addition, it can be said that it recognized the importance of a video advertising strategy such as YouTube and one-person media. The results of this study can be used as basic data for analyzing the big data in understanding the Chinese cosmetics market and establishing appropriate strategies and marketing utilization of related companies.