• 제목/요약/키워드: E-Cadherin

검색결과 187건 처리시간 0.02초

Butyrate-induced differentiation of PC12 cells to chromaffin cells involves cell adhesion and induction of extracellular proteins and cell adhesion proteins

  • Heo, Jee-In;Oh, Soo-Jin;Kho, Yoon-Jung;Kim, Jeong-Hyeon;Kang, Hong-Joon;Park, Seong-Hoon;Kim, Hyun-Seok;Shin, Jong-Yeon;Lee, Sung-Young;Kim, Min-Ju;Min, Bon-Hong;Kim, Sung-Chan;Park, Jae-Bong;Kim, Jae-Bong;Lee, Jae-Yong
    • Animal cells and systems
    • /
    • 제14권4호
    • /
    • pp.261-266
    • /
    • 2010
  • PC12 cells were differentiated into the cells of chromaffin phenotype by butyrate treatment. Cells were aggregated and formed tight cell adhesion. To investigate the molecular change in this differentiation, we examined expression levels of cell adhesion proteins and extracellular proteins during butyrate induced-differentiation of PC12 cells. Integrin ${\beta}1$, integrin ${\alpha}7$, E cadherin, VCAM, collagen-I, fibronectin, desmoglein and connexin were increased during differentiation. The levels of clusterin and secreted clusterin were also increased. These increased levels of cell adhesion proteins and extracellular proteins appear to induce cell aggregation and tight cell adhesion. The levels of p21, p27 and p16 were increased probably because of differentiation-related growth arrest during differentiation. Prolonged incubation of butyrate up to 1 day was required for differentiation. Signal transduction pathways for this differentiatiom could not be identified since various inhibitors had no effect. The results showed that butyrateinduced differentiation of PC12 cells to chromaffin cells involves tight cell adhesion and induction of extracellular proteins and cell adhesion proteins.

개 유선종양세포에 대한 자연살해세포 독성 (Cytotoxicity of natural killer cells on canine mammary carcinoma cells)

  • 정다운;변정수;구나연;정문희;김은희;김형석;조인수;송재영;현방훈;이지현
    • 대한수의학회지
    • /
    • 제60권1호
    • /
    • pp.25-32
    • /
    • 2020
  • Natural killer (NK) cells play have a crucial role in the early phase of immune responses against various pathogens. We compared characteristics of canine NK cells against two canine mammary carcinoma cell lines, REM134 and CF41.Mg. REM134 showed higher expression of progesterone receptor, proliferative cell nuclear antigen, Ki67, multiple drug resistance, Bmi-1, c-myc, E-cadherin, and human epidermal growth factor receptor type-2 than that of CF41.Mg. For specific expansion and activation of NK cells, we isolated CD5 negative cells from canine peripheral blood mononuclear cells and co-cultured K562 cells in the presence of interleukin (IL)-2, IL-15, and IL-21 for 21 days. As a result, we found that expression markers of activated NK cells such as NKp30, NKp44, NKp46, NKG2D, CD244, perforin, granzyme B, and tumor necrosis factor alpha were highly upregulated. In addition, we found there was upregulated production of interferon gamma of activated NK cells against target cells such as REM134 and CF41.Mg. Specifically, we observed that cytotoxicity of NK cells against target cells was more sensitively reacted to CF41.Mg than REM134. Based on the results of this study, we recommend the development of an experimental application of CF41Mg, which has not been reported in canine mammary carcinoma research.

EMT 억제를 통한 멜리틴의 폐암세포 이동 및 침투 억제 효과 (Melittin inhibits cell migration and invasion via blocking of the epithelial-mesenchymal transition (EMT) in lung cancer cells)

  • 조현지;정윤정;김문현;정일경;강동욱;장영채
    • 한국식품과학회지
    • /
    • 제50권1호
    • /
    • pp.105-110
    • /
    • 2018
  • 멜리틴은 봉독의 주요 성분 중 하나로 항염증과 항암활성 효과를 가지고 있다. 우리는 폐암세포에서 멜리틴이 EMT 억제를 통해 암세포 이동과 침투를 억제하는 사실을 확인하였다. 멜리틴은 EGF로 유도된 폐암 세포 이동과 침투를 억제하였을 뿐만 아니라 EMT와 관련된 단백질인 이카드헤린의 발현을 증가시켰으며, 바이멘틴과 피브로넥틴 발현은 감소시켰다. 또한 멜리틴에 의한 EMT조절 전사인자인 ZEB2, Slug, Snail의 발현을 확인한 결과 멜리틴 처리에 의해 농도의존적으로 발현이 감소하였다. 또한 작용 메커니즘을 확인하기 위해 mTOR와 FAK 메커니즘을 확인한 실험에서 EGF 처리에 의해 증가한 AKT, mTOR, p70S6K, 4EBP1의 인산화가 멜리틴 농도의존적으로 감소하였다. 그러나 FAK는 EGF에 의해 변화가 없었으며, EKR, JNK 메커니즘은 EGF 처리에 의해 인산화가 증가하였으나 멜리틴 처리에 의해 아무런 영향을 받지 않았다. 그러므로, 폐암세포의 세포 이동과 침투에 대한 멜리틴의 억제효과는 AKT/mTOR/P70S6K/4EBP1 기전 억제를 통해 EMT를 억제하여 세포 이동과 침투를 억제하는 것으로 보인다.

Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway

  • Park, Wonjin;Baek, Yi-Yong;Kim, Joohwan;Jo, Dong Hyun;Choi, Seunghwan;Kim, Jin Hyoung;Kim, Taesam;Kim, Suji;Park, Minsik;Kim, Ji Yoon;Won, Moo-Ho;Ha, Kwon-Soo;Kim, Jeong Hun;Kwon, Young-Guen;Kim, Young-Myeong
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.474-483
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, ${\beta}$-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.

Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer

  • Kim, Hyunhee;Choi, Pilju;Kim, Taejung;Kim, Youngseok;Song, Bong Geun;Park, Young-Tae;Choi, Seon-Jun;Yoon, Cheol Hee;Lim, Won-Chul;Ko, Hyeonseok;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.134-148
    • /
    • 2021
  • Background: Lung cancer has a high incidence worldwide, and most lung cancer-associated deaths are attributable to cancer metastasis. Although several medicinal properties of Panax ginseng Meyer have been reported, the effect of ginsenosides Rk1 and Rg5 on epithelial-mesenchymal transition (EMT) stimulated by transforming growth factor beta 1 (TGF-β1) and self-renewal in A549 cells is relatively unknown. Methods: We treated TGF-β1 or alternatively Rk1 and Rg5 in A549 cells. We used western blot analysis, real-time polymerase chain reaction (qPCR), wound healing assay, Matrigel invasion assay, and anoikis assays to determine the effect of Rk1 and Rg5 on TGF-mediated EMT in lung cancer cell. In addition, we performed tumorsphere formation assays and real-time PCR to evaluate the stem-like properties. Results: EMT is induced by TGF-β1 in A549 cells causing the development of cancer stem-like features. Expression of E-cadherin, an epithelial marker, decreased and an increase in vimentin expression was noted. Cell mobility, invasiveness, and anoikis resistance were enhanced with TGF-β1 treatment. In addition, the expression of stem cell markers, CD44, and CD133, was also increased. Treatment with Rk1 and Rg5 suppressed EMT by TGF-β1 and the development of stemness in a dose-dependent manner. Additionally, Rk1 and Rg5 markedly suppressed TGF-β1-induced metalloproteinase-2/9 (MMP2/9) activity, and activation of Smad2/3 and nuclear factor kappa B/extra-cellular signal regulated kinases (NF-kB/ERK) pathways in lung cancer cells. Conclusions: Rk1 and Rg5 regulate the EMT inducing TGF-β1 by suppressing the Smad and NF-κB/ERK pathways (non-Smad pathway).

Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152

  • Rongrong Zhang ;Xinmiao Li ;Yuxiang Gao ;Qiqi Tao;Zhichao Lang;Yating Zhan;Chunxue Li;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.534-542
    • /
    • 2023
  • Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor β (TGF-β) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-β pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

조기위암으로 위 절제술 후 갑자기 발생한 췌담도암으로 오인되었던 재발성 위암 1례 (Recurrent Early Gastric Cancer with Liver Metastasis Mimicking Pancreaticobiliary Cancer)

  • 이병후;조주영
    • Journal of Digestive Cancer Research
    • /
    • 제1권1호
    • /
    • pp.48-51
    • /
    • 2013
  • 73세 남자 환자로 약 1개월 전부터 상복부 불편감 주소로 본원 내원 후 시행한 상부 내시경 검사상 하체부 전벽측의 조기위암으로 내시경 점막하 박리술을 시행하였다. 조직검사 결과 저분화도(poorly differentiated type)의 선암이 발견되었고, 절제면의 암세포 침범 소견은 없었으나, 점막하 2층(900 um)까지 침윤된 소견과 일부 림프선 전이 소견이 보여 위 절제 수술(subtotal gastrectomy)을 시행하였다. 조직검사 결과 점막층에 국한된 저분화도의 선암이 발견되었고, 그 외 림프절 전이 등의 소견은 보이지 않아 수술 후 병기 1기의 조기위암(T1N0M0, stage IA) 으로 진단 후 추가적인 항암치료 없이 추적관찰을 하였다. 이후 6개월 마다 복부 전산화단층촬영술과 상부 내시경 검사를 시행하였으며, 수술 후 2년째 시행한 복부 전산화단층촬영 결과 간의 다발성의 전이성암으로 의심되는 소견이 관찰되었다. 간 조직 검사를 시행하였고, 조직검사 결과 저분화도의 선암으로 발견되었으며, 원발 병소를 확인하기 위해 면역화학 검사를 시행한 결과 췌담도 계통의 암에서 특징적으로 보일 수 있는 CK7과 CK19이 강양성 소견을 보여 담도암의 간전이로 의심하였다. 이후 췌담도 MRI 및 PET 검사 등을 시행 하였으나, 담도암 등의 소견은 관찰되지 않았다. 위암은 특징적으로 발생 기전에서 다양한 내적 및 외적 원인들(nitrosamine, H. pylori, E-cadherin mutation 등)로 인해 면역 화학 조직검사 결과가 다양하게 나타날 수 있기 때문에(heterogeneous cytokeratin expression pattern) 면역화학 검사 결과만으로 위암 가능성을 배제할 수 없는 것으로 보고되고 있다. 따라서 위암의 간전이로 진단 후 항암치료를 시행하였으며, 면역화학 검사에서 췌담도 계통의 암으로 오인되었던 재발성 전이성 위암의 증례 1례를 문헌고찰과 함께 보고한다.

  • PDF