• Title/Summary/Keyword: E-서비스

Search Result 3,683, Processing Time 0.036 seconds

Trends of Study and Classification of Reference on Occupational Health Management in Korea after Liberation (해방 이후 우리나라 산업보건관리에 관한 문헌분류 및 연구동향)

  • Ha, Eun-Hee;Park, Hye-Sook;Kim, Young-Bok;Song, Hyun-Jong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.28 no.4 s.51
    • /
    • pp.809-844
    • /
    • 1995
  • The purposes of this study are to define the scope of occupational health management and to classify occupational management by review of related journals from 1945 to 1994 in Korea. The steps of this study were as follows: (1) Search of secondary reference; (2) Collection and review of primary reference; (3) Survey; and (4) Analysis and discussion. The results were as follows ; 1. Most of the respondents majored in occupational health(71.6%), and were working in university (68.3%), males and over the age 40. Seventy percent of the respondents agreed with the idea that classification of occupational health management is necessary, and 10% disagreed. 2. After integration of the idea of respondents, we reclassified the scope of occupational health management. It was defined 3 parts, that is , occupational health system, occupational health service and others (such as assessment, epidemiology, cost-effectiveness analysis and so on). 3. The number of journals on occupational health management was 510. It was sightly increased from 1986 and abruptly increased after 1991. The kinds of journals related to occupational health management were The Korean Journal of Occupational Medicine(18.2%), Several Kinds of Medical Colloge Journal(17.0%), The Korean Journal Occupational Health(15.1%), The Korean Journal of Preventive Medicine(15.1%) and others(34.6%). As for the contents, the number of journals on occupational health management systems was 33(6.5%) and occupational health services 477(93.5%). Of the journals on occupational health management systems, the number of journals on the occupational health resource system was 15(45.5%), occupational finance system 8(24.2%), occupational health management system 6(18.2%), occupational organization 3(9.1%) and occupational health delivery system 1 (3.0%). Of the journals on occupational health services, the number of journals on disease management was 269(57.2%), health management 116(24.7%), working environmental management 85(18.1%). As for the subjects, the number of journals on general workers was 185(71.1%), followed by women worker, white coiler workers and so on. 4. Respondents made occupational health service(such as health management, working environmental management and health education) the first priority of occupational health management. Tied for the second are quality analysis(such as education, training and job contents of occupational health manager) and occupational health systems(such as the recommendation of systems of occupational and general disease and occupational health organization). 5. Thirty seven respondents suggested 48 ideas about the future research of occupational health management. The results were as follows: (1) Study of occupational health service 40.5%; (2) Study of organization system 27.1%; (3) Study of occupational health system (e.g. information network) 8.3%; (4) Study of working condition 6.2%; and (5) Study of occupational health service analysis 4.2%.

  • PDF

Dual Path Model in Store Loyalty of Discount Store (대형마트 충성도의 이중경로모형)

  • Ji, Seong-Goo;Lee, Ihn-Goo
    • Journal of Distribution Research
    • /
    • v.15 no.1
    • /
    • pp.1-24
    • /
    • 2010
  • I. Introduction The industry of domestic discount store was reorganized with 2 bigs and 1 middle, and then Home Plus took over Home Ever in 2008. In present, Oct, 2008, E-Mart has 118 outlets, Home Plus 112 outlets, and Lotte Mart 60 stores. With total number of 403 outlets, they are getting closer to a saturation point. We know that the industry of discount store has been getting through the mature stage in retail life cycle. There are many efforts to maintain existing customers rather than to get new customers. These competitions in this industry lead firms to acknowledge 'store loyalty' to be the first strategic tool for their sustainable competitiveness. In other words, the strategic goal of discount store is to boost up the repurchase rate of customers throughout increasing store loyalty. If owners of retail shops can figure out main factors for store loyalty, they can easily make more efficient and effective retail strategies which bring about more sales and profits. In this practical sense, there are many papers which are focusing on the antecedents of store loyalty. Many researchers have been inspecting causal relationships between antecedents and store loyalty; store characteristics, store image, atmosphere in store, sales promotion in store, service quality, customer characteristics, crowding, switching cost, trust, satisfaction, commitment, etc., In recent times, many academic researchers and practitioners have been interested in 'dual path model for service loyalty'. There are two paths in store loyalty. First path has an emphasis on symbolic and emotional dimension of service brand, and second path focuses on quality of product and service. We will call the former an extrinsic path and call the latter an intrinsic path. This means that consumers' cognitive path for store loyalty is not single but dual. Existing studies for dual path model are as follows; First, in extrinsic path, some papers in domestic settings show that there is 'store personality-identification-loyalty' path. Second, service quality has an effect on loyalty, which is a behavioral variable, in the mediation of customer satisfaction. But, it's very difficult to find out an empirical paper applied to domestic discount store based on this mediating model. The domestic research for store loyalty concentrates on not only intrinsic path but also extrinsic path. Relatively, an attention for intrinsic path is scarce. And then, we acknowledge that there should be a need for integrating extrinsic and intrinsic path. Also, in terms of retail industry, this study is meaningful because retailers want to achieve their competitiveness by using store loyalty. And so, the purpose of this paper is to integrate and complement two existing paths into one specific model, dual path model. This model includes both intrinsic and extrinsic path for store loyalty. With this research, we would expect to understand the full process of forming customers' store loyalty which had not been clearly explained. In other words, we propose the dual path model for discount store loyalty which has been originated from store personality and service quality. This model is composed of extrinsic path, discount store personality$\rightarrow$store identification$\rightarrow$store loyalty, and intrinsic path, service quality of discount store$\rightarrow$customer satisfaction$\rightarrow$store loyalty. II. Research Model Dual path model integrates intrinsic path and extrinsic path into one specific model. Intrinsic path put an emphasis on quality characteristics and extrinsic path focuses on brand characteristics. Intrinsic path is based on information processing perspective, and extrinsic path emphasizes symbolic and emotional dimension of brand. This model is composed of extrinsic path, discount store personality$\rightarrow$store identification$\rightarrow$store loyalty, and intrinsic path, service quality of discount store$\rightarrow$customer satisfaction$\rightarrow$store loyalty. Hypotheses are as follows; Hypothesis 1: Service quality perceived by customers in discount store has an positive effect on customer satisfaction Hypothesis 2: Store personality perceived by customers in discount store has an positive effect on store identification Hypothesis 3: Customer satisfaction in discount store has an positive effect on store loyalty. Hypothesis 4: Store identification has an positive effect on store loyalty. III. Results and Implications We examined consumers who patronize discount stores for samples of this study. With the structural equation model(SEM) analysis, we empirically tested the validity and fitness of the dual path model for store loyalty in discount stores. As results, the fitness indices of this model were well fitted to data obtained. In an intrinsic path, service quality(SQ) is positively related to customer satisfaction(CS), customer satisfaction(CS) has very significantly positive effect on store loyalty(SL). Also, in an extrinsic path, the store personality(SP) is positively related to store identification(SI), it shows significant effect on store loyalty. Table 1 shows the results as follows; There are some theoretical and practical implications. First, Many studies on discount store loyalty have been executed from various perspectives. But there has been no integrative view on this issue. And so, this research was theoretically designed to integrate various and controversial arguments into one systematic model. We empirically tested dual path model forming store loyalty, and brought up a systematic and integrative framework for future studies. We want to expect creative and aggressive research activities. Second, a few established papers are focused on the relationship between antecedents and store loyalty; store characteristics, atmosphere, sales promotion in store, service quality, trust, commitment, etc., There has been some limits in understanding thoroughly the formation process of store loyalty with a singular path, intrinsic or extrinsic. Beyond these limits in single path, we could propose the new path for store loyalty. This is meaningful. Third, discount store firms make and execute marketing strategies for increasing store loyalty. This research provides real practitioners with reference framework needed for actual strategy formation. Because this paper shows integrated and systematic path for store loyalty. A special feature of this study is to represent 6 sub dimensions of service quality in intrinsic path and 4 sub dimensions of store personality in extrinsic path. Marketers can make more analytic marketing planning with concrete sub dimensions of service quality and store personality. When marketers of discount stores make strategic planning like MPR, Ads, campaign, sales promotion, they can use many items which are more competitive than competitors.

  • PDF

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

A Survey on Activities of Community Health Practitioners in Rural Area (농촌지역 보건지료원의 업무활동 분석)

  • Kang, Pock-Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 1987
  • The community health practitioners (CHP) play an important role in primary health care services to the underserved population in rural area. Time and motion study of 26 CHPs in Kyungpook Province was conducted through work diary method for 6 consecutive days from the time they arrived until they left the primary health post(PHP) during the past 3 weeks from November 16 to December 5, 1987. The allocation of activity time by working category, service category, location of activity and CHP's function was analyzed according to the characteristics of CHPs i. e., age, marital status and experience as CHP. The major findings are as follows : The mean activity time per CHP in a week was 2,918 minutes. The length of their working hours was longer for older, married and more experienced CHPs than others. About 80% of the CHP's activities took place within the PHP and only about 20% occured outside of the PHP. Working hours for the outdoor activities were longer for younger, single and less experienced CHPs than others. The allocation of activity time by working category showed 46.3% in the technical work and 18.7% in the administrative work. Working hours for the technical activities were longer for younger, single and less experienced CHPs than others. The percentage of activity time revealed greatest as much as 63.1% for direct patient care in technical work and 61.6% for record keeping in administrative work. Of the total working hours in a week, direct patient care and public health activities accounted for 29.2% and 16.2%, respectively. Of the indoor activities, working hours for direct patient care were longer than those for public health activities. However, of the outdoor activities, working hours for public health activities were longer than those for direct patient care. The allocation of activity time by CHP's function showed 49.7% in management of common disease, 31.8% in management of PHP and technical supervision of village health workers, 9.5% in MCH and family planning, 6.6% in community health management and 2.4% in community approach. Based on these findings, it was found that CHPs were mainly working in the PHP with a majority of their time being spent for direct patient care rather than preventive and promotive health cares. To enhance the preventive and promotive health services of the CHPs and to involve the activities for community development, refresher course for CHPs should be reinforced and supervision mechanism of the CHPs should be established and operated in Gun- and province-level.

  • PDF

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.

Development of a Real-Time Mobile GIS using the HBR-Tree (HBR-Tree를 이용한 실시간 모바일 GIS의 개발)

  • Lee, Ki-Yamg;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.73-85
    • /
    • 2004
  • Recently, as the growth of the wireless Internet, PDA and HPC, the focus of research and development related with GIS(Geographic Information System) has been changed to the Real-Time Mobile GIS to service LBS. To offer LBS efficiently, there must be the Real-Time GIS platform that can deal with dynamic status of moving objects and a location index which can deal with the characteristics of location data. Location data can use the same data type(e.g., point) of GIS, but the management of location data is very different. Therefore, in this paper, we studied the Real-Time Mobile GIS using the HBR-tree to manage mass of location data efficiently. The Real-Time Mobile GIS which is developed in this paper consists of the HBR-tree and the Real-Time GIS Platform HBR-tree. we proposed in this paper, is a combined index type of the R-tree and the spatial hash Although location data are updated frequently, update operations are done within the same hash table in the HBR-tree, so it costs less than other tree-based indexes Since the HBR-tree uses the same search mechanism of the R-tree, it is possible to search location data quickly. The Real-Time GIS platform consists of a Real-Time GIS engine that is extended from a main memory database system. a middleware which can transfer spatial, aspatial data to clients and receive location data from clients, and a mobile client which operates on the mobile devices. Especially, this paper described the performance evaluation conducted with practical tests if the HBR-tree and the Real-Time GIS engine respectively.

  • PDF