• Title/Summary/Keyword: E coli expression vector

Search Result 405, Processing Time 0.024 seconds

Cloning of Bacillus amyloliquefaciens amylase gene using YEp13 as a vector I. Expression of cloned amylase gene in Escherichia coli (YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I. Escherichia coli에서의 발현)

  • 이창후;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.155-160
    • /
    • 1986
  • $\alpha$-Amylase gene of B. amyloliquefaciens was cloned to E. coli-yeast shuttle vector YEp-13 and expressed in E. coli. Chromosomal DNA of B. amyloliquefaciens was partially digested with Sau3Al and YEp13 plasmid was cleaved with BamH1. The hybrid plasmid, pHA28, was constructed by shotgun method and transformed to E. coli C600 and HB101. The amount of $\alpha$-amylase produced by transformants of E. coli was about 20% to 30% of that produced by B. amyloli-quefaciens. About 65% of $\alpha$-amylase produced by transformant was secreted into periplasm and the others were located in cytoplasm. $\alpha$-Amylase production was maximal when transformants were cultivated for 15hr to 20hr. As the result of agarose gel electrophoresis, pHA28 plasmid was found to be various in its size. This result suggested that pHA28 plasmid was segregated.

  • PDF

Evaluation of a New Episomal Vector Based on the GAP Promoter for Structural Genomics in Pichia pastoris

  • Hong In-Pyo;Anderson Stephen;Choi Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1362-1368
    • /
    • 2006
  • A new constitutive episomal expression vector, pGAPZ-E, was constructed and used for initial screening of eukaryotic target gene expression in Pichia pastoris. Two reporter genes such as beta-galactosidase gene and GFPuv gene were overexpressed in P. pastoris. The expression level of the episomal pGAPZ-E strain was higher than that of the integrated form when the beta-galactosidase gene was used as the reporter gene in P. pastoris X33. The avoiding of both the integration procedure and an induction step simplified the overall screening process for eukaryotic target gene expression in P. pastoris. Nine human protein targets from the Core 50, family of Northeast Structural Genomics Consortium (http://www.nesg.org), which were intractable when expressed in E. coli, were subjected to rapid screening for soluble expression in P. pastoris. HR547, HR919, and HR1697 human proteins, which had previously been found to express poorly or to be insoluble in E. coli, expressed in soluble form in P. pastoris. Therefore, the new episomal GAP promoter vector provides a convenient and alternative system for high-throughput screening of eukaryotic protein expression in P. pastoris.

Production of Human Interferon β by Recombinant E. coli Using the Codon Optimized Gene (코돈 최적화된 유전자를 이용한 재조합 대장균으로부터 인간 인터페론 베타 발현)

  • Kim, Jong-Seok;Jang, Seung-Won;Park, Jae-Bum;Kwon, Deok-Ho;Chang, Young-Jun;Jung, Hyung-Moo;Han, Sang-In;Hong, Eock-Kee;Ha, Suk-Jin
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • The multiple sclerosis caused by multiple inflammatory disease or immune system disorder, is usually treated by interferon ${\beta}$ through adjusting the abnormal immune reactions. For high production of human interferon ${\beta}$ using recombinant E. coli, codon optimized and wild type genes were synthesized. When pET-15b or pET-21a vector was used as an expression vector with each gene, there was no target protein expression. When pQE30 vector was used as an expression vector, human interferon ${\beta}$ was expressed by recombinant E. coli XL1-blue and E. coli JM109. Using the codon optimized gene, the expression of human interferon ${\beta}$ was slightly increased as compared to that from wild type gene. However, most of expressed human interferon ${\beta}$ was insoluble form.

Expression of a Yeast Superkiller Gene(SK13) in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 효모 Superkiller 유전자(SK13)의 발현)

  • ;Wickner, Reed B.
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.114-119
    • /
    • 1990
  • A yeast chromosomal superkiller gene (SK13) was cloned and expressed in $ski3^{-}$ Saccharomyces cerevisiae strains. The gene was fused to the structural region of E. coli lacZ gene at its C-terminus in a yeast-E. coli shuttle vector, pSR605. The fused gene complemented $ski3^{-}$ strains with SK13 activity and the quantitative level of expression was measured as determined by assaying $\beta$-galactosidase activity. The SDS-polyacrylamide gel electrophoresis and the Western blot analysis of this fused protein showed the immuno-reacted bands with a protein of the estimated molecular size (ca.250Kd).

  • PDF

Development and Characterization of Expression Vectors for Corynebacterium glutamicum

  • Lee, Jinho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.70-79
    • /
    • 2014
  • In an attempt to develop a variety of expression vector systems for Corynebacterium glutamicum, six types of promoters, including $P_{tac}$, $P_{sod}$, $P_{sod}$ with a conserved Shine-Dalgarno (SD) sequence from C. glutamicum, $P_{ilvC}$, $P_{ilvC}$ with a conserved SD-1 ($P_{ilvC-M1}$), and $P_{ilvC}$ with a conserved SD-2 ($P_{ilvC-M2}$), were cloned into a modified shuttle vector, pCXM48. According to analysis of promoter strength by quantitative reverse transcription PCR, $P_{sod}$ and $P_{sod-M}$ were superior to tac and ilvC promoters in terms of transcription activity in C. glutamicum. All of the promoters have promoter activities in Escherichia coli, and $P_{sod-M}$ displayed the highest level of transcriptional activity. The protein expression in constructed vectors was evaluated by measuring the fluorescence of green fluorescent protein (GFP) and SDS-PAGE. C. glutamicum harboring plasmids showed GFP fluorescence with an order of activity of $P_{ilvC}$ > $P_{ilvC-M1}$ > $P_{sod}$ > $P_{ilvC-M2}$ > $P_{sod-M}$, whereas all plasmids except pCSP30 with $P_{sod}$ displayed fluorescence activities in E. coli. Of them, the strongest level of GFP was observed in E. coli with $P_{sod-M}$, and this seems to be due to the introduction of the conserved SD sequence in the translational initiation region. These results demonstrate that the expression vectors work well in both C. glutamicum and E. coli for the expression of target proteins. In addition, the vector systems harboring various promoters with different strengths, conserved SD sequences, and multiple cloning sites will provide a comfortable method for cloning and gene expression, and consequently contribute to the metabolic engineering of C. glutamicum.

Overexpression of the bacteriophase PRD1 DNA polymerase

  • Jung, Gu-Hung
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.141-148
    • /
    • 1992
  • In order to overexpress bacteriophage PRD1 DNA polymerase in E. coli cells, the 2 kb HaeII fragment was isolated from phage genomic DNA. This fragment was then cloned into pEMBL/sup ex/ 3-expression vector. A specific 57bp deletion was performed by using uracil containing ss DNA and oligonucleotide spanning each region to remove an unwanted non-coding region. After this deletion, the PRD1 DNA polymerase gene is totally under the control of the vector promoter and SD sequence. Upon heat induction, a protein with an apparent size of 68 kdal was overexpressed as an active PRD1 DNA polymerase. The expression of PRD1 DNA polymerase was about 1% of total E. coli protein.

  • PDF

Screening of Promoter Sequences from Lactic Acid Bacteria Using a Promoter-Selection Vector (Promoter-Selection Vector를 사용한 유산균 Promoter의 탐색)

  • 우승희;김갑석
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.504-509
    • /
    • 1996
  • Promoters which are useful for constructing expression vectors for lactic acid bacteria were obtained from the chromosomal DNA of Lactococcus lactis ssp. lactis MG1363. pBV5030, a promoter-selection vector, replicates in L. lactis and Escherichia coli and carries a promoterless chloramphenicol acetyltransferase gene (cat-86). After examining E. coli transformants which grew on LB media containing chloramphenicol (Cm, 20$\mu\textrm{g}$/mL) , many MG1363 derived DNA fragments which encompass promoter sequences were identified. Some recombinant E. coli cells can grow at the Cm concentration of 1,000$\mu\textrm{g}$/mL. When plasmids from those highly resistant E. coli cells were purified and introduced into L. lactis ssp. lactis MG1614 cells by electroporation, lactococcal transformants showing Cm resistance were obtained. So far, five plasmids with different promoter inserts were introduced into L. lactis MGl614 cells. The maximum level of Cm resistance in L. lactis MG1614 transformants was quite low (20$\mu\textrm{g}$/mL) when compared with that observed in recombinant E. coli cells harboring the same plasmids.

  • PDF

Cloning and Expression of a Full-Length Glutamate Decarboxylase Gene from Lactobacillus plantarum

  • Park, Ki-Bum;Oh, Suk-Heung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.324-329
    • /
    • 2004
  • In order to investigate the molecular mechanism of $\gamma$-aminobutyric acid (GABA) production in lactic acid bacteria, we cloned a glutamate decarboxylase (GAD) gene from Lactobacillus plantarum using polymerase chain reaction (PCR). One PCR product DNA was obtained and inserted into a TA cloning vector with a T7 promoter. The recombinant plasmid was used to transform E. coli. The insertion of the product was con­firmed by EcoRI digestion of the plasmid purified from the transformed E. coli. Nucleotide sequence analysis showed that the insert is a full-length Lactobacillus plantarum GAD and that the sequence is $100\%$ and $72\%$ identical to the regions of Lactobacillus plantarum GAD and Lactococcus lactis GAD sequences deposited in GenBank, accession nos: NP786643 and NP267446, respectively. The amino acid sequence deduced from the cloned Lactobacillus plantarum GAD gene showed $100\%$ and $68\%$ identities to the GAD sequences deduced from the genes of the NP786643 and NP267446, respectively. To express the GAD protein in E. coli, an expression vector with the GAD gene (pkk/GAD) was constructed and used to transform the UT481 E. coli strain and the expression was confirmed by analyzing the enzyme activity. The Lactobacillus plantarum GAD gene obtained may facilitate the study of the molecular mechanisms regulating GABA metabolism in lactic acid bacteria.

Production of Theileria sergenti recombinant protein by E coli expression system

  • Park, Jin-ho;Chae, Joon-seok;Kim, Dae-hyuk;Jang, Yong-suk;Kwon, Oh-deong;Lee, Joo-mook
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.786-796
    • /
    • 1999
  • As an attempt to develop an effective control method against theileriosis, recombinant antigen protein was produced. Thirty-two kDa membrane protein(MP) gene of T sergenti was amplified through RT-PCR from extracted total RNA of T sergenti isolated in Chonbuk, Korea. The amplified 869 bp of Korean T sergenti membrane gene was cloned and the base sequences were analyzed. The amplified gene was cloned into E coli expression vector, pQE32 plasmid vector, and the vector was introduced into E coli strain M15 to produce the recombinant membrane protein. For the induction of T sergenti membrane protein(KTs-MP), the plasmid harboring E coli strain M15 were cultured in the presence of IPTG, and the recombinant protein were purified by $Ni^+$-NTA agarose. Then, to confirm the authenticity of the produced membrane protein, molecular weight of expressed recombinant KTs-MP was analyzed by SDS-PAGE and Western blotting. The molecular weight of expressed recombinant protein was 32 kDa as expected. The recombinant KTs-MP was successfully recognized by anti-His Tag antibody, antisera of T sergenti infected cattle and monoclonal antibody of T sergenti membrane protein. Therefore, we concluded that the authentic 32 kDa membrane protein of T sergenti was produced as immunologically recognizable form.

  • PDF

Development of a Plasmid Vector for Overproduction of $\beta$-Galactosidase in Escherichia coli by Using Genetic Components of groEx from Symbiotic Bacteria in Amoeba proteus

  • Lee, Jung-Eun;Ahn, Eun-Young;Ahn, Tae-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.509-516
    • /
    • 1998
  • A plasmid vector, pXGPRMATG-lac-Tgx, was developed for overproduction of $\beta$-galactosidase in Escherichia coli using the genetic components of groEx, a heat-shock gene cloned from symbiotic X-bacteria in Amoeba proteus. The vector is composed of intragenic promoters P3 and P4 of groEx, the structural gene of lac operon, transcription tenninator signals of lac and groEx, and ColEl and amp'of pBluescript SKII. The optimized host, E. coli DH5$\alpha$, transfonned with the vector constitutively produced 117,310-171,961 Miller units of $\beta$-galactosidase per mg protein in crude extract. The amount of enzyme in crude extract was 53% of total water-soluble proteins. About 43% of the enzyme could be purified to a specific activity of 322,249 Miller units/mg protein after two-fold purification, using two cycles of precipitation with ammonium sulfate and one step of gel filtration. Thus, the expression system developed in this study presents a low-cost and simple method for purifying overproduced $\beta$-galactosidase in E. coli.

  • PDF