• Title/Summary/Keyword: Dysmorphism

Search Result 39, Processing Time 0.027 seconds

1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis

  • Kang, Dong Soo;Shin, Eunsim;Yu, Jeesuk
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.14-18
    • /
    • 2016
  • Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000-10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year-and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia.

Interstitial deletion of 5q33.3q35.1 in a boy with severe mental retardation

  • Lee, Jin Hwan;Kim, Hyo Jeong;Yoon, Jung Min;Cheon, Eun Jung;Lim, Jae Woo;Ko, Kyong Og;Lee, Gyung Min
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.19-24
    • /
    • 2016
  • Constitutional interstitial deletions of the long arm of chromosome 5 (5q) are quite rare, and the corresponding phenotype is not yet clearly delineated. Severe mental retardation has been described in most patients who present 5q deletions. Specifically, the interstitial deletion of chromosome 5q33.3q35.1, an extremely rare chromosomal aberration, is characterized by mental retardation, developmental delay, and facial dysmorphism. Although the severity of mental retardation varies across cases, it is the most common feature described in patients who present the 5q33.3q35.1 deletion. Here, we report a case of a de novo deletion of 5q33.3q35.1, 46,XY,del(5)(q33.3q35.1) in an 11-year-old boy with mental retardation; to the best of our knowledge this is the first case in Korea to be reported. He was diagnosed with severe mental retardation, developmental delay, facial dysmorphisms, dental anomalies, and epilepsy. Chromosomal microarray analysis using the comparative genomic hybridization array method revealed a 16-Mb-long deletion of 5q33. 3q35.1(156,409,412-172,584,708)x1. Understanding this deletion may help draw a rough phenotypic map of 5q and correlate the phenotypes with specific chromosomal regions. The 5q33.3q35.1 deletion is a rare condition; however, accurate diagnosis of the associated mental retardation is important to ensure proper genetic counseling and to guide patients as part of long-term management.

Usefulness of using Tissue Expander in Pediatric Patient (소아 환자에서 조직확장기 사용의 유용성)

  • Lee, Jun-Woo;Park, Chul-Gyoo;Park, Jong-Lim;Kim, Yong-Kyu
    • Archives of Plastic Surgery
    • /
    • v.37 no.6
    • /
    • pp.763-768
    • /
    • 2010
  • Purpose: Reconstruction of soft tissue defect using tissue expander can provide better flap which is more similar to surrounding tissue in color, skin texture and hair compared to other methods. Many pediatric patients need reconstruction of soft tissue defect because of giant congenital nevi, congenital or acquired malformations and burn scars. Reconstruction using tissue expander is adequate to minimize dysmorphism in these patients. We intended to assess outcomes of using tissue expander in pediatric patients by retrospective study. Methods: Total cases were 168 of pediatric patients who received soft tissue reconstruction using tissue expander by the same surgeon from February, 1982 to May, 2009. All patients who received soft tissue reconstruction were under 10 years old. Mean age was 4.3 years old, the youngest 13 months, the oldest 8 years. Eightynine cases were male and 79 cases were female. Most common cause was giant hairy nevi (67 cases, 39.9%), secondary cause was burn scar/scar contracture (61 cases, 36.3%). Trunk (38 cases, 22.6%) was most common anatomical location. Results: Soft tissue defects were successfully covered using tissue expander in 149 cases (88.7%) without major complications. There was infection on 8 cases (4.7%) and we treated by adequate antibiotics in these cases. There were tissue expander folding or valve displacement on 5 cases (3%). Conclusion: Usage of tissue expander is useful on pediatric patients because tissue expansion is rapid on children and there are less secondary contractures on operation site than full thickness skin graft. Because of psychological stress due to tissue expander, operation should be performed before school age.

A case of Smith-Lemli-Opitz syndrome confirmed by molecular analysis: Review of mutation spectrum of the DHCR7 gene in Korea

  • Oh, Moon-Yeon;Kim, Jun Suk;Kim, Ja Hye;Cho, Ja Hyang;Lee, Beom Hee;Kim, Gu-Hwan;Choi, Jin-Ho;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.11 no.2
    • /
    • pp.86-90
    • /
    • 2014
  • Smith-Lemli-Opitz syndrome (SLOS) is a rare autosomal recessive disorder caused by 7-dehydrocholesterol reductase deficiency. The characteristic clinical features are syndactyly of the second and third toes, facial dysmorphism, multiple malformations, and intellectual disability. Few cases of SLOS have been reported in Korea. We observed a male patient with SLOS who presented with typical facial features, undescended testes, microcephaly, bilateral syndactyly of the second and third toes, and cardiac defects, including patent ductus arteriosus and atrial septal defect. Mutation analysis of the DHCR7 gene identified compound heterozygous mutations of c.907G>A (p.Gly303Arg) and c.1055G>A (p.Arg352Gln). In a review of the literature, c.1054C>T (p.Arg352Trp) was the most common mutation reported in Far East Asian countries. This report describes the clinical features, biochemical data, molecular characteristics, and clinical outcome of a Korean patient with SLOS.

A novel homozygous mutation in SZT2 gene in Saudi family with developmental delay, macrocephaly and epilepsy

  • Naseer, Muhammad Imran;Alwasiyah, Mohammad Khalid;Abdulkareem, Angham Abdulrahman;Bajammal, Rayan Abdullah;Trujillo, Carlos;Abu-Elmagd, Muhammad;Jafri, Mohammad Alam;Chaudhary, Adeel G.;Al-Qahtani, Mohammad H.
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1149-1155
    • /
    • 2018
  • Epileptic encephalopathies are genetically heterogeneous disorders which leads to epilepsy and cause neurological disorders. Seizure threshold 2 (SZT2) gene located on chromosome 1p34.2 encodes protein mainly expressed predominantly in the parietal and frontal cortex and dorsal root ganglia in the brain. Previous studies in mice showed that mutation in this gene can confers low seizure threshold, enhance epileptogenesis and in human may leads to facial dysmorphism, intellectual disability, seizure and macrocephaly. Objective of this study was to find out novel gene or novel mutation related to the gene phenotype. We have identified a large consanguineous Saudi family segregating developmental delay, intellectual disability, epilepsy, high forehead and macrocephaly. Exome sequencing was performed in affected siblings of the family to study the novel mutation. Whole exome sequencing data analysis, confirmed by subsequent Sanger sequencing validation study. Our results showed a novel homozygous mutation (c.9368G>A) in a substitution of a conserved glycine residue into a glutamic acid in the exon 67 of SZT2 gene. The mutation was ruled out in 100 unrelated healthy controls. The missense variant has not yet been reported as pathogenic in literature or variant databases. In conclusion, the here detected homozygous SZT2 variant might be the causative mutation that further explain epilepsy and developmental delay in this Saudi family.

Prospective evaluation of the clinical utility of whole-exome sequencing using buccal swabbing for undiagnosed rare diseases

  • Chong Kun Cheon;Yong Beom Shin;Soo-Yeon Kim;Go Hun Seo;Hane Lee;Changwon Keum;Seung Hwan Oh
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.76-84
    • /
    • 2022
  • Purpose: Whole-exome sequencing (WES) has been a useful tool for novel gene discovery of various disease categories, further increasing the diagnostic yield. This study aimed to investigate the clinical utility of WES prospectively in undiagnosed genetic diseases. Materials and Methods: WES tests were performed on 110 patients (age range, 0-28 years) with suspected rare genetic diseases. WES tests were performed at a single reference laboratory and the variants reported were reviewed by clinical geneticists, pediatricians, neurologists, and laboratory physicians. Results: The patients' symptoms varied with abnormalities in the head or neck, including facial dysmorphism, being the most common, identified in 85.4% of patients, followed by abnormalities in the nervous system (83.6%). The average number of systems manifesting phenotypic abnormalities per patient was 3.9±1.7. The age at presentation was 2.1±2.7 years old (range, 0-15 years), and the age at WES testing was 6.7±5.3 years (range, 0-28 years). In total, WES test reported 100 pathogenic/likely pathogenic variants or variants of uncertain significance for 79 out of 110 probands (71.8%). Of the 79 patients with positive or inconclusive calls, 55 (50.0%) patients were determined to have good genotype-phenotype correlations after careful review. Further clinical reassessment and family member testing determined 45 (40.9%) patients to have been identified with a molecular diagnosis. Conclusion: This study showed a 40.9% diagnostic yield for WES test for a heterogeneous patient cohort with suspected rare genetic diseases. WES could be the feasible genetic test modality to overcome the diversity and complexity of rare disease diagnostics.

MESIODENS EXTRACTION OF A PATIENT WITH ROBINOW SYNDROME UNDER GENERAL ANESTHESIA (로비노 증후군(Robinow syndrome) 환자의 전신마취 하 과잉치 발치)

  • Park, Sung-Hee;Shin, Teo-Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Jang, Ki-Taeg
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Robinow syndrome is skeletal dysplasia with both autosomal dominant and recessive inheritance patterns. It is characterized by short-limbed dwarfism, abnormalities in the head and face, as well as vertebral segmentation. A 2-year-7-month old boy with Robinow syndrome had visited Seoul National University Dental Hospital, for the evaluation of tooth palatal eruption on maxilla. He had micrognathia, delayed tooth eruption, cleft lip with bifid uvula. He also had an erupted mesiodens on the palatal side of maxillary primary incisors, which was tuberculated and 8mm in major diameter. The patient was scheduled for mesiodens extraction under general anesthesia. He was a young child with delayed development, so general anesthesia was inevitable. General anesthesia was induced and maintained with inhalation agent, Sevoflurane. There were no postoperative complications related to anesthesia and dental treatment. Robinow syndrome patients have craniofacial dysmorphism and eruption disorders. Therefore, he requires regular check-ups as well as dental managements.

Early Diagnosis of KBG Syndrome Using Diagnostic Exome Sequencing (Diagnostic exome sequencing을 통한 KBG 증후군의 조기 진단)

  • Hong, Jun Ho;Kim, Se Hee;Lee, Seung Tae;Choi, Jong Rak;Kang, Hoon Chul;Lee, Joon Soo;Kim, Heung Dong
    • Journal of the Korean Child Neurology Society
    • /
    • v.26 no.4
    • /
    • pp.272-275
    • /
    • 2018
  • KBG syndrome is a rare neurodevelopmental disorder characterized by intellectual disability, skeletal anomalies, short stature, craniofacial dysmorphism, and macrodontia. ANKRD11 gene mutation and 16q24.3 microdeletion have been reported to cause KBG syndrome. Here, we report two patients with ANKRD11 mutations who initially presented with neurologic symptoms such as developmental delay and seizures. Patient 1 was a 23-month-old boy who presented with a global developmental delay. Language delay was the most dominant feature. He had hypertelorism, hearing impairment, and behavior problems characterized as hyperactivity. A c.1903_1907delAAACA (p.Lys635GInfsTer26) mutation in ANKRD11 was identified with diagnostic exome sequencing. Patient 2 was a 14-month-old boy with developmental delay and seizure. He also had atrial septum defect, and ventricular septal defect. Generalized tonic seizures began at the age of 8 months. Electroencephalography showed generalized sharp and slow wave pattern. Seizures did not respond to antiepileptic drugs. A loss of function mutation c.5350_5351delTC (p.ser1784HisfsTer12) in ANKRD11 was identified with diagnostic exome sequencing. In both cases, characteristic features of KBG syndrome such as short stature or macrodontia, were absent, and they visited the hospital due to neurological symptoms. These findings suggest that more patients with mild phenotypes of KBG syndrome are being recognized with advances in diagnostic exome sequencing genetic technologies.

COVID-19 in a 16-Year-Old Adolescent With Mucopolysaccharidosis Type II: Case Report and Review of Literature

  • Park, So Yun;Kim, Heung Sik;Chu, Mi Ae;Chung, Myeong-Hee;Kang, Seokjin
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) in patients with underlying diseases, is associated with high infection and mortality rates, which may result in acute respiratory distress syndrome and death. Mucopolysaccharidosis (MPS) type II is a progressive metabolic disorder that stems from cellular accumulation of the glycosaminoglycans, heparan, and dermatan sulfate. Upper and lower airway obstruction and restrictive pulmonary diseases are common complaints of patients with MPS, and respiratory infections of bacterial or viral origin could result in fatal outcomes. We report a case of COVID-19 in a 16-year-old adolescent with MPS type II, who had been treated with idursulfase since 5 years of age. Prior to infection, the patient's clinical history included developmental delays, abdominal distension, snoring, and facial dysmorphism. His primary complaints at the time of admission included rhinorrhea, cough, and sputum without fever or increased oxygen demand. His heart rate, respiratory rate, and oxygen saturation were within the normal biological reference intervals, and chest radiography revealed no signs of pneumonia. Consequently, supportive therapy and quarantine were recommended. The patient experienced an uneventful course of COVID-19 despite underlying MPS type II, which may be the result of an unfavorable host cell environment and changes in expression patterns of proteins involved in interactions with viral proteins. Moreover, elevated serum heparan sulfate in patients with MPS may compete with cell surface heparan sulfate, which is essential for successful interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the host cell surface, thereby protecting against intracellular penetration by SARS-CoV-2.