• Title/Summary/Keyword: Dynamic voltage converter

Search Result 254, Processing Time 0.03 seconds

A Study on Power Factor and Dynamics in Arc Welding System Using Single Switched PFC Converter

  • Choi, Hae-Ryong;Mok, Hyung-Soo;Goo, Young-Mo;Kim, Gyu-Sik;Choe, Gyu-Ha;Won, Chung-Yun
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.62-67
    • /
    • 1998
  • An arc welding machine using single switched PFC converter is presented in this paper. First, the basic operation and principle is reviewed. Controller design is intended to force voltage ripple to minimize, and dynamic response to enhance, Feed-forward strategy for arc welding machine is developed, and that is verified by simulation. The improved power factor characteristics of arc welding machine known as low power factor system with nonlinear property, are shown and evaluated compared to conventional one.

  • PDF

Control Algorithms of Large Synchronous Machines for Starting Gas Turbosets

  • Hwang, Seon-Hwan;Kim, Jang-Mok;Ryu, Ho-Seon;Yoon, Gi-Gab
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.146-155
    • /
    • 2009
  • The static frequency converter (SFC) systems are used as a method of driving large synchronous machines in many power and industrial plants. In this paper, new control algorithms of SFC systems for starting gas turbo sets are proposed for a four quadrant operation: start-up at standstill; an acceleration up to the speed of the rated voltage; field weakening to reach the rated speed; synchronization to the main alternating current (AC) source; and dynamic braking to stop safely within the rating of the synchronous machine. Experimental results show that the proposed algorithms are proper and effective.

Controller Design of a DC-DC Converter using an Optimal Control Theory (최적제어이론을 이용한 DC-DC 컨버터의 제어기 설계)

  • Lee, S.H.;Bae, E.K.;Sin, C.J.;Jeon, K.Y.;Jeon, J.Y.;Oh, B.H.;Lee, H.G.;Han, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.421-423
    • /
    • 2007
  • In this paper, The authors apply a state feedback control using an optimal control theory to improve the stability of the control and the dynamic response of the DC-DC converter system with a number of different loads. To execute a this state feedback control, The authors present the pole placement technique using Linear Quadratic Regulator(LQR) to optimally control the system. An integrator can also be included in the open-loop path in order to minimize the steady-state error of the output voltage. To confirm the superiority of the controller, The simulation results are presented.

  • PDF

Premium Power Quality Using Combination of Microturbine Unit and DC Distribution System

  • Noroozian, Reza;Abedi, Mehrdad;Gharehpetian, Gevorg
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.103-115
    • /
    • 2010
  • This paper discusses a DC distribution system which has been supplied by external AC systems as well as local microturbine distributed generation system in order to demonstrate an overall solution to power quality issue. Based on the dynamic model of the converter, a design procedure has been presented. In this paper, the power flow control in DC distribution system has been achieved by network converters. A suitable control strategy for these converters has been proposed, too. They have DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control system has been proposed for MT converter. Several case studies have been studied and the simulation results show that DC distribution system including microturbine unit can provide the premium power quality using proposed methods.

Design and Measurement of Controller for Paralleling Step-down Converter (강압형 병렬 컨버터의 제어기 설계 및 검증)

  • Park, Sung-Woo;Yoon, Hee-Kwang;Park, Hee-Sung;Jang, Jin-Beak;Lee, Sang-Kon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.449-452
    • /
    • 2009
  • Optimized controller design for converters are very important because control-loop characteristics of converters determine the dynamic performances of converters. In addition, verification process of the control-loop characteristics by simulation and measurement with real hardware is sure to be performed after all parameters for controller and main power-stage are fixed. In this paper, general process for designing outer-loop controller of paralleling step-down converter is described. Simulation results are also contained for verifying validity of controller design results. Finally, voltage control-loop measurement method is explained and results are compared with simulation outputs.

  • PDF

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

Design of 6bit CMOS A/D Converter with Simplified S-R latch (단순화된 S-R 래치를 이용한 6비트 CMOS 플래쉬 A/D 변환기 설계)

  • Son, Young-Jun;Kim, Won;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.963-969
    • /
    • 2008
  • This paper presents 6bit 100MHz Interpolation Flash Analog-to-Digital Converter, which can be applied to the Receiver of Wireless Tele-communication System. The 6bit 100MHz Flash Analog-to-Digital Converter simplifies and integrates S-R latch which multiplies as the resolution increases. Whereas the conventional NAND based S-R latch needed eight MOS transistors, this Converter was designed with only six, which makes the Dynamic Power Dissipation of the A/D Converter reduced up to 12.5%. The designed A/D Converter went through $0.18{\mu}m$ CMOS n-well 1-poly 6-metal process to be a final product, and the final product has shown 282mW of power dissipation with 1.8V of Supply Voltage, 100MHz of conversion rate. And 35.027dBc, 31.253dB SFDR and 4.8bits, 4.2bits ENOB with 12.5MHz, 50MHz of each input frequency.

A Single-Phase Quasi Z-Source AC-AC Converter with a Series Connection of the Output Terminals (출력이 직렬 결합된 단상 Quasi Z-소스 AC-AC 컨버터)

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.415-429
    • /
    • 2011
  • In this study, a single-phase quasi Z-source AC-AC converters with a series connection of the output terminals is proposed. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel and its output terminals are connected in series. The out of phase mode and in phase mode of the proposed system are presented. To verify the validity of the proposed converter, a DSP controlled hardware was made and PSIM simulation was executed. As a result, controlling the duty ratio of the converter, the desired buck-boost output voltages could be generated. For each modes, as compared with the single converter operation, the proposed converter could enhance the efficiency and input power factor according to different loads. Also, in case of the out of phase mode under the constant load, the efficiency and input power factor of the proposed system are increased 10[%], 35[%] respectively in compared with the single converter. And, the output voltage is constantly controlled in dynamic state in case while the load is suddenly changed.

Quasi-Fixed-Frequency Hysteresis Current Tracking Control Strategy for Modular Multilevel Converters

  • Mei, Jun;Ji, Yu;Du, Xiaozhou;Ma, Tian;Huang, Can;Hu, Qinran
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1147-1156
    • /
    • 2014
  • This study proposes a quasi-fixed-frequency hysteresis current tracking control strategy for modular multilevel converters (MMCs) on the basis of voltage partition principle. First, by monitoring the grid voltage and the deviation between the output and reference currents, the output voltage is determined, thus prompting the output current to quickly and efficiently track the given current. Second, the voltages of the upper/lower capacitor of the arm and the voltages between the upper and lower arms are balanced by combining these arms with virtual loop mapping and arm voltage balance control, respectively. In particular, the proposed method is designed for any level and number of sub-modules. The validity of the proposed method is verified by simulations and experimental results of a five-level MMC prototype.

A Self-Excited Induction Generator with Simple Voltage Regulation Suitable for Wind Energy

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.205-216
    • /
    • 2004
  • In this paper, a three-phase induction machine-based wind power generation scheme is proposed. This scheme uses a low-cost diode bridge rectifier circuit connected to an induction machine via an ac load voltage regulator (AC-LVR) to regulate dc power transfer. The AC-LVR is used to regulate the DC load voltage of the diode bridge rectifier circuit which is connected to the three-phase self-excited induction generator (SEIG). The excitation of the three-phase SEIG is supplied by the static VAR compensator (SVC). This simple method for obtaining a full variable-speed wind turbine system by applying a back-to-back power converter to a wound rotor induction generator is useful for wind power generation at widely varying speeds. The dynamic performance responses and the experimental results of connecting a 5kW 220V three-phase SEIG directly to a diode bridge rectifier are presented for various loads. Moreover, the steady-state simulated and experimental results of the PI closed-loop feedback voltage regulation scheme prove the practical effectiveness of these simple methods for use with a wind turbine system.