• Title/Summary/Keyword: Dynamic trim

Search Result 44, Processing Time 0.019 seconds

Helicopter Trim Analysis and Flight Simulation by Uising DAE Based PPTA (Partial Periodic Trimming Algorithm) (DAE 해법과 PPTA(Partial Periodic Trimming Algorithm)를 이용한 헬리콥터 트림해석 및 비행 시뮬레이션)

  • Kim,Chang-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • To get a periodic trim solution from Level II helicopter flight dynamic equations, DAE based PPT A (partial Periodic Trimming Algorithm) has been proposed. Iterative update of state variables from PPT A can cause a numerical instability in DAE solver which needs compatible initial conditions. By simply adjusting the order of DAE solver a periodic trim can be obtained with good accuracy. Application for CBM (Common Baseline Model) helicopter showed the same trim result as harmonic balance method and the effective elimination of unrealistic initial responses at the start of flight simulation.

Design of Pitch Limit Detection Algorithm for Submarine (잠수함의 종동요각 한계예측 알고리즘 설계)

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.134-140
    • /
    • 2016
  • An envelope protection system is a control system that allows a submarine to operate freely using its own operational envelope without exceeding the structural limit, dynamic limit, and control input limit. In this paper, an envelope protection system for the pitch angle of a submarine is designed using a dynamic trim algorithm. A linear quadratic regulator and artificial neural network are used for the true dynamics approximation. A submarine maneuvering simulation program developed using experimental data is used to validate the designed envelope protection system. Simulation results show the effectiveness of the designed envelope protection system.

A Study on Longitudinal Flight Dynamics of a QTW UAV (QTW 무인항공기의 종축 비행동역학에 관한 연구)

  • Jung, Ji In;Hong, Sung Tae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • A Quad Tilt Wing UAV is a new concept hybrid UAV having the advantages of both fixed-wing and rotary-wing aircraft. This paper presents longitudinal flight dynamic characteristics of a Quad Tilt Wing UAV. The designed Quad Tilt Wing UAV is a configuration of a tandem wing type aircraft with an actuating motor and propeller mounted at each wing. Momentum theory is used to calculate the thrust, and nonlinear modeling is performed considering lift and drag generated by slip stream effect of propellers. Also, Force and moment variation at each tilting angle is considered. Static trim on longitudinal axis is analyzed via numerical simulation. Componentwise force contribution was analyzed at each trim mode. Dynamic characteristics were evaluated through eigenvalue analysis for a linear model at each flight mode. It is verified that longitudinal dynamic characteristics are changing from unstable to stable state by continuous transition of dominant poles.

Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model (동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석)

  • Lee, Joon-Bae;Yoo, Seung-Jae;Jeong, Min-Soo;Lee, In;Kim, Deog-Kwan;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.297-305
    • /
    • 2011
  • In this study, the aeroelastic analysis of rotorcraft in forward flight has been performed using dynamic inflow model to handle unsteady aerodynamics. The quasi-steady airload model based on the blade element method has been coupled with dynamic inflow model developed by Peters and He. The nonlinear steady response to periodic motion is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim for stability analysis. The aerodynamic and structural characteristics of dynamic inflow model are validated against other numerical analysis results by comparing induced inflow and blade tip deflections(flap, lag). In order to validate aeroelastic stability of dynamic inflow model, lag damping are also compared with those of linear inflow model.

Development of Door Trim Assembly System base on Digital Manufacturing Technology (디지털 제조기술 지원 도어트림 조립시스템 개발)

  • Park, Hong-Seok;Mun, Si-Hwan;Park, Sang-Kil;Choi, Hong-Won;Shin, Sang-Jong;Cha, Suk-Keun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.242-253
    • /
    • 2009
  • Nowadays, manufacturing industry has been making its effort not only for productivity elevation but also for cost reduction in order to survive in the global market which is more and more challenging. In this paper, the method for planning of digital manufacturing system is proposed and door trim assembly system is determined as the subject of our research. First of all, the process sequence is generated based on the product analysis. And, the static and dynamic relationships between system components are represented using IDEF0 and UML model. The working time is estimated through the regression analysis based on MODAPTS method. According to the system configuration strategy, initial concept system layout is implemented 3D virtual environment. The problems caused by bad working motions are detected and modified through the ergonomic analysis using RULA method. According to proposed procedure, digital door trim assembly system is implemented in DLEMIA.

Analysis of Resistance Performance of a Ship having a Large Attitude based on CFD (CFD에 의한 자세변화가 큰 선박의 저항성능 해석)

  • Kim, Hyun-Soo;Park, Dong-Woo;Yang, Young-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.961-967
    • /
    • 2019
  • This research presents an efficient method based on computational fluid dynamics (CFD) for estimating the resistance performance of a ship with a large settlement amount and a dynamic trim. The settlement of the inviscid flow analysis and the results of dynamic trim were used to set a large attitude for the ship prior to performing a viscous flow analysis; a viscous flow analysis was subsequently performed by Dynamic Fluid Body Interaction (DFBI). This method is termed as method I, in which a simple grating system can be used without employing the overset mesh technique by setting many attitudes before interpretation. Thus, method I is advantageous in reducing calculation time and improving calculation accuracy. The viscous flow analysis was performed using a commercial CFD code STAR-CCM+. Compared with the final convergence result, the first viscous flow analysis result of method I exhibited a variation of less than 1 % of resistance. The result was obtained by changing the gratings each time an attitude is changed at each calculation stage, based on the DFBI method provided to STAR-CCM+ using a simple grating system, which is not a superposed grating. This method is termed as method II. Compared with method II of resistance, method I exhibited a dif erence of 0.03-0.6 % for linear velocity. The results of method I were confirmed to be qualitatively and quantitatively appropriate through comparison with several trillion simulations.

Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method (자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정)

  • Bang, Keuk-Hee;Kim, Nak-Wan;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

A Study on Design Constraints of a Supercavitating Underwater Vehicle (초공동 수중운동체의 설계 제약조건에 관한 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • This paper defines the design constraint in consideration of the dynamic characteristics and stability in the longitudinal direction of a supercavitating vehicle. Available range of the design variables is calculated by numerical simulation and the cavity modeling of vehicle dynamics is performed first. Configuration parameters of the supercavitating vehicle to determine the vehicle dynamics and characteristics of the cavity are defined as design variables. Design constraints are supercavitation, trim velocity, stability and vehicle dynamics in transition phase. Numerical results show that in accordance with the change of the design variables, the proposed design constraints reflect the physical characteristics of the supercavitating vehicle. This research finds the design region where the constraints of supercavity and the trim velocity are satisfied, and the stability analysis refines the design results by excluding the region where the stability is not guaranteed. The stability analysis is particularly important for a vehicle with the short fin span.

Prediction of fishing boat performance using computational fluid dynamics (전산 유체 해석을 이용한 어선의 속도 성능 추정)

  • Kim, In-Seob;Park, Dong-Woo;Lee, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.574-579
    • /
    • 2016
  • Grid systems used in previous studies were determined to be valid only if the length between the perpendiculars in a model ship was in the range of 6-8 m, and the maximum dynamic trim angle was smaller than $1^{\circ}$. The application of the grid system to a small fishing boat can create numerical instability because the dynamic trim of small boats is generally larger than $3^{\circ}$, and their Froude numbers are in the range of 0.3-0.8. In the present study, resistances of a small fishing boat were stably obtained by reducing the length between the center of buoyancy and the inlet boundary of the numerical domain, and by refining grid cells vertically in a region that would be swept by a free surface. The effective power of the small fishing boat was predicted based on the ITTC-1978 two-dimensional analysis. By using the results of previous towing tank tests, the coefficient of quasi-propulsive efficiency and the brake horsepower at a design draft were calculated.

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong-Min;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.25-32
    • /
    • 2002
  • Structural and dynamic analyses of inducer and impeller for an oxidizer turbopump are peformed to investigate the safety level of strength and vibration at a design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three-dimensional Finite Element Method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances are sufficient enough for safe operation within the requited life cycle.