• Title/Summary/Keyword: Dynamic tensile strengths

Search Result 32, Processing Time 0.024 seconds

Influence of Rock Inhomogeneity on the Dynamic Tensile Strength of Rock (암석의 동적 인장강도에 미치는 불균질성의 영향)

  • Cho, Sang-Ho;Yang, Hyung-Sik;Katsuhiko Kaneko
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.180-186
    • /
    • 2003
  • The fracture processes under dynamic loading in tension were simulated using a proposed numerical approach and analyzed to determine dynamic tensile strength. The dynamic tensile strength and the scatter of the strength data decreased with increasing uniformity coefficients. The differences of static and dynamic tensile strength were due to the stress concentrations and redistribution mechanisms in the rock specimen. Although there were different mechanisms for the static and dynamic fracture processes, the static and dynamic tensile strengths were close to the mean microscopic tensile strength at high values of the uniformity coefficient. This paper shows that the rock inhomogeneity has an effect on dynamic tensile strength and is a factor that contributes to the different specimen strengths under dynamic and static loading conditions.

Evaluation of the Joint Strength of Lead-free Solder Ball Joints at High Strain Rates (고속 변형률 속도에서의 무연 솔더 볼 연결부의 강도 평가)

  • Joo, Se-Min;Kim, Taek-Young;Lim, Woong;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.7-13
    • /
    • 2012
  • A lack of study on the dynamic tensile strengths of Sn-based solder joints at high strain rates was the motivation for the present study. A modified miniature Charpy impact testing machine instrumented with an impact sensor was built to quantitatively evaluate the dynamic impact strength of a solder joint under tensile impact loading. This study evaluated the tensile strength of lead-free solder ball joints at strain rates from $1.8{\times}10^3s^{-1}$ and $8.5{\times}10^3s^{-1}$. The maximum tensile strength of the solder ball joint decreases as the load speed increases in the testing range. This tensile strength represented that of the interface because of the interfacial fracture site. The tensile strengths of solder joints between Sn-3.0Ag-0.5Cu and copper substrate were between 21.7 MPa and 8.6 MPa in the high strain range.

Estimation of Dynamic Brazilian Tensile Strengths of Rocks Using Split Hopkinson Pressure Bar (SHPB) System (스플릿 홉킨슨 압력봉 실험장비를 이용한 암석의 동적 압열인장강도 평가에 관한 연구)

  • Yang, Jung-Hun;Ahn, Jung-Lyang;Kim, Seung-Kon;Song, Young-Su;Sung, Nak-Hoon;Lee, Youn-Kyou;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, we estimated the dynamic tensile strength and strain rate from Brazilian tensile test using Split Hopkinson Pressure Bar (SHPB) system. A pulse shaping technique, which controls the shape of the impactinduce incident waves, was used for achieving the dynamic stress equilibrium and constant strain rate before fracture of rock samples. Three kinds of rock type, Inada granite, Kimachi sandstone and Tage tuff were prepared as 50mm in diameter and 26 mm in thickness. The high-speed videography system was used to observe the fracture processes of the rock samples. As the results of the tests, the ratio of dynamic tensile strength and static tensile strength was 11.9 for Inada granite, 8.5 for Kimachi sandstone and 9.2 for Tage tuff.

Strengths and Non-destruction Properties of Super Flow Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 초유동 콘크리트의 강도 및 비파괴 특성)

  • Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • This study was performed to evaluate strengths and non-destruction properties of super flow concrete using recycled coarse aggregate. At the curing age of 28 days, the compressive strength was 22.7-37.5 MPa, the splitting tensile strength was $2.65\~3.73$ MPa, the flexural strength was $5.78\~6.86$ MPa, the ultrasonic pulse velocity was $3,103\~3,480$ mis, the dynamic modulus of elasticity was $3.401{\times}104\~4.521{\times}104$MPa, respectively. The strengths, ultrasonic pulse velocity and dynamic modulus of elasticity of super flow concrete were decreased with increasing the content of recycled coarse aggregate. The super flow concretes using recycled coarse aggregate were improved by substitution in the range of less than the fly ash content 30010 and recycled coarse aggregate content $75\%$.

Dynamic Strength Variation of Glass Epoxy Composites with respect to Strain Rates (변형률 속도에 따른 유리섬유 에폭시 복합재료의 동적 강도 변화)

  • 임태성;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.83-88
    • /
    • 2001
  • In this study, the tensile and compressive tests of glass fiber epoxy composites were performed to measure the strength variation with respect to strain rates of 1-200 $\textrm{sec}^{-1}$. In addition, tensile and compressive tests of 50-200 $\textrm{sec}^{-1}$ strain rates were conducted at a low temperature ($-60^{\circ}C$) to investigate the effects of temperature on the strength variation. From the test results, it was found that the tensile and compressive strengths increased about 100% and 70%, respectively, at the strain rates of 10-100 $\textrm{sec}^{-1}$ compared to the quasi-static strengths while the strengths were little affected by the environmental temperature variation.

  • PDF

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

Microstructures and Mechanical Properties of DA Alloy 718 (직접시효 처리된 Alloy718 합금의 미세조직과 기계적 특성)

  • Eum C. Y.;Yeom J. T.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.222-225
    • /
    • 2004
  • Alloy 718 is normally used for the stationary and rotating parts of gas turbines due to its excellent combination of high temperature mechanical properties, formability and weldability. The mechanical properties of the Alloy 718 depend very much on grain size, as well as the strengthening phases, ${\gamma}'\;and\;{\gamma}'$. Direct aging is normally used to enhance tensile strengths at high temperatures. The grain structure of the superalloy components is mainly controlled during thermo-mechanical process by the dynamic, meta-dynamic recrystallization and grain growth. In this study, the influence of grain structure and heat treatment on tensile properties of direct-aged Alloy 718 was evaluated.

  • PDF

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.

Study on Crashworthiness of Icebreaker Steel: Part I Steel Properties (쇄빙선 강재의 내충격 특성에 관한 실험적 연구: 제1부 강재 특성)

  • Noh, Myung-Hyun;Lee, Jae-Yik;Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.268-276
    • /
    • 2016
  • This paper presents a study on the crashworthiness of the scaled-down stiffened panels used on a Korean icebreaker. In order to validate the crashworthiness of the panels, this paper provides various mechanical properties such as the results of a CVN test, quasi-static tensile test, and high-speed tensile test at arctic temperatures. Two types of steels (EH32 and FH32) were chosen for the material tests. CVN tests revealed that the two steels were equivalent up to −60℃ in terms of their impact energy absorption capacity. However, the toughness of FH32 was significantly superior to that of EH32. EH32 showed slightly higher flow stresses at all temperature levels compared to FH32. The improvement ratios of the yield strengths, tensile strengths, plastic hardening exponents, etc. for FH32, which were obtained from quasi-static tensile tests, showed an apparent ascending tendency with a decrease in temperature. Dynamic tensile test results were obtained for the two temperatures levels of 20℃ and −60℃ with two plastic strain rate levels of 1 s−1 and 100 s−1. A closed form empirical formula proposed by Choung et al. (2011;2013) was shown to be effective at predicting the flow stress increase due to a strain rate increase.

A numerical study on the damage of projectile impact on concrete targets

  • Lu, Gang;Li, Xibing;Wang, Kejin
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the numerical simulation of the rigid 12.6 mm diameter kinetic energy ogive-nosed projectile impact on plain and fiber reinforced concrete (FRC) targets with compressive strengths from 45 to 235 MPa, using a three-dimensional finite element code LS-DYNA. A combined dynamic constitutive model, describing the compressive and tensile damage of concrete, is implemented. A modified Johnson_Holmquist_Cook (MJHC) constitutive relationship and damage model are incorporated to simulate the concrete behavior under compression. A tensile damage model is added to the MJHC model to analyze the dynamic fracture behavior of concrete in tension, due to blast loading. As a consequence, the impact damage in targets made of plain and fiber reinforced concrete with same matrix material under same impact velocities (650 m/s) are obtained. Moreover, the damage distribution of concrete after penetration is procured to compare with the experimental results. Numerical simulations provide a reasonable prediction on concrete damage in both compression and tension.